
http://www.ixsystems.com

http://www.ixsystems.com

http://www.ixsystems.com

01/20124

CONTENTS

Editor in Chief:
Patrycja Przybyłowicz

patrycja.przybylowicz@software.com.pl

Contributing:
Dru Lavigne, Toby Richards, Rob Sommerville, Michael Shirk,
Edward Tan, Sławomir Wojtczak, Paul McMath, Luca Ferrari

Proofreaders:
Robert Nowak, Zander Hill, Sander Reiche, Christopher J. Umina

Special Thanks:
Denise Ebery

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Executive Ad Consultant:
Ewa Dudzic

ewa.dudzic@software.com.pl

Advertising Sales:
Patrycja Przybyłowicz

patrycja.przybylowicz@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

Mathematical formulas created by Design Science MathType™.

Dear Readers,
The New Year has come. People are now full of dreams and
expectations... again. It happens year after year, so it can
be sad that there is nothing to talk about... However, each
January we know better what are our goals and how to
achieve them. We know more about what we like and what
we don’t. In this special month when all have minds �led
with new ideas, we would like to present you 30th issue
of BSD Magazine. We hope you will �nd it inspiring and
entertaining. This time you will have a chance to update
your knowledge about FreeBSD.

We start with What’s New in FreeBSD 9.0 by Dru
Lavigne. Next, the section How To follows. You will have an
opportunity to learn more about Puppet on FreeBSD and
how to deploy servers by using it. Michael Shirk will discuss
the Snort’s ability to integrate with ipfw that allow for inline
IPS mode on FreeBSD. Toby Richards will show you how to
build Captive Portal using OpenBSD’s Packet Filter.

For admins this time Paul McMath prepared the piece
about malloc(9): The Kernel’s General Purpose Memory
Allocator. Don’t miss that! In Tips & Tricks Slawomir
Wojtczak deals with an ungrateful topic of keeping both
FreeBSD’s base system and installed packages up-to-date.
Since the new release is out it’s an obligatory position on
January list of articles. In section Security you will �nd part
2 of Anatomy of a FreeBSD Compromise by Rob Somerville.
This time he will examine some of the common techniques
used to gain control and what we can do to mitigate the
risks.

Let’s talk will give you a chance to learn something
about PostgreSQL and PGDay in Italy. I hope you will �nd it
inspiring somehow... Don’t forget to send us your feedback!

Wish you all your dreams come true in 2012!

Patrycja Przybyłowicz
& BSD Team

Contents

www.bsdmag.org 5

Tips&Tricks
Keeping FreeBSD’s Base System and
Packages Up-To-Date
Sławomir Wojtczak

In tis article the author deals with an ungrateful topic
of keeping both FreeBSD’s base system and installed
packages up-to-date. Read it to learn more about
upgrading/updating FreeBSD system, adding/removing
packages and get some knowledge about Ports concept
and its genaral usage.

Security
Anatomy of a FreeBSD Compromise
(Part 2)
Rob Sommerville

Continuing in our security series, the author will look at the
ways that “the bad guys” can gain access and what can
be done to mitigate this risk. As mentioned in the previous
article, the author highlighted this time some of the reasons
why servers and systems are inherently insecure and why
it is impossible to 100% secure any system. In this article,
he will examine some of the common techniques used to
gain control and what we can do to mitigate the risks.

Let’s Talk
Elephants in Prato
Luca Ferrari

The first official Italian PGDay was organized by a
bunch of volounteers and passionates, including the
author, in 2007. At that time ITPUG did not exist at all.
The conference catch the attention of several other
PostgreSQL related communities, including Japan
PostgreSQL Users’ Group (JPUG), and had a lot of
special guests including members of the core team. This
quickly lead the organizers to extend the conference from
one day only to a two days event.

Developer’s Corner
What’s New in FreeBSD 9.0
Dru Lavigne

FreeBSD 9.0-RELEASE introduces many new features
which benefit FreeBSD users, application developers, and
companies that use or base their products on FreeBSD.
This article provides an overview of some of these
features, including references to additional information.

How To
Home Brew Captive Portal With
OpenBSD
Toby Richards

Have you ever used a public wireless network that has
a splash screen such that you have to agree to certain
terms before going to the Internet? The author of this
article will show you step by step how to build one of those
using OpenBSD’s Packet Filter (pf).

Puppet on FreeBSD
Edward Tan

This article aims to jumpstart a system administrator on
how to use Puppet (configuration management tool), to
manage server’s configurations, particularly on FreeBSD.
From this article you will find out what is Puppet and how
to deploy servers by using it.

FreeBSD IPS With Snort Inline
Michael Shirk

A number of articles have been written covering the
basic configuration of Snort in IDS mode on the different
BSD operating systems. One feature that is not typically
discussed is Snort’s ability to integrate with ipfw that allow
for inline IPS mode on FreeBSD. This article covers the
basic configuration of Snort in IPS mode on a FreeBSD
server.

Admin
malloc(9): The Kernel’s General Purpose
Memory Allocator
Paul McMath

The release of 4.3BSD in 1988 introduced a new memory
allocation mechanism intended to be general enough to
effectively meet the needs of diverse kernel subsystems
requiring dynamic memory allocation. This article gives
an overview of malloc(9) and its corresponding function
free(9) and explains how this type of dynamically allocated
memory is managed within the kernel.

06

10

14

28

44

38

24

20

01/2012 6

FreeBSD 9.0-RELEASE introduces many new
features which benefit FreeBSD users, application
developers, and companies that use or base their

products on FreeBSD. This article provides an overview of
some of these features, including references to additional
information. It does not list all of the new features as the
FreeBSD 9.0 Detailed Release Notes, available from
freebsd.org, contains a summary of all the changes
introduced in 9.0.

This article discusses features in the following
categories: security, compilers and testing frame-
works, filesystems and storage, networking, and miscel-
laneous.

Security
Capsicum Framework
Capsicum is a lightweight framework which extends a
POSIX UNIX kernel to support new security capabilities
and adds a userland sandbox API. It was originally
developed as a collaboration between the University of
Cambridge Computer Laboratory and Google, sponsored
by a grant from Google, with FreeBSD as the prototype
platform and Chromium as the prototype application.
FreeBSD 9.0 provides kernel support as an experimental
feature for researchers and early adopters. Application
support will follow in a later FreeBSD release and there
are plans to provide some initial Capsicum-protected
applications in FreeBSD 9.1.

Traditional access control frameworks are designed
to protect users from each other through the use of

permissions and mandatory access control policies.
However, they cannot protect the user when an
application, such as a web browser, processes many
potentially malicious inputs, such as HTML, scripting
languages, and untrusted images. Capsicum provides
application developers fine-grained control over files and
network sockets to provide privilege separation within an
application, with minimal code changes. In other words,
it provides application compartmentalisation, allowing
the application itself to provide many different sandboxes
to contain its various elements. As an example, each
tab in the Chromium browser has its own sandbox; it is
also possible to contain each image in its own sandbox.
Creating sandboxes under Capsicum does not require
privilege, a key problem with current UNIX sandbox
approaches.

As an example, the insecure tcpdump application can
be sandboxed with Capsicum in about 10 lines of code
and the Chromium web browser can be sandboxed
in about 100 lines of code. capsicum(4) provides an
overview of the available system calls. More information,
including links to technical publications, projects, and a
mailing list, can be found at the Capsicum website: http://
www.cl.cam.ac.uk/research/security/capsicum/.

Resource Limits
rctl(8) has been added to the system, allowing the user to
display the current resource limits and to define what action
will occur when a process exceeds it limits. Resource rules
can be applied to processes, users, login classes, or jails.

What’s New
in FreeBSD

9.0
This article provides an overview of some of the new
features available in FreeBSD 9.0.

http://www.cl.cam.ac.uk/research/security/capsicum/
http://www.cl.cam.ac.uk/research/security/capsicum/

What’s New in FreeBSD 9.0

www.bsdmag.org 7

The racct API tracks per-process, per-jail, per-loginclass,
and per-user resource accounting information. More
information about resource limits and rctl can be found at
http://wiki.freebsd.org/Hierarchical_Resource_Limits.

Compilers and Testing Frameworks
LLVM Compiler Infrastructure

LLVM is a BSD-licensed
compiler infrastructure with
similar capabilities to the
GPL3-licensed GCC compiler
collection. Clang is the C, C++,
Objective C, and Objective
C++ front-end to LLVM
and provides an alternative
programming environment for
developers and companies

who prefer to use a BSD-
licensed toolchain.
In addition to being BSD-

licensed, Clang improves developer
productivity with significantly improved

error messages and a static code analyzer.
The compiler is easily extendable to support research on
new language features or code instrumentation.

Beginning with FreeBSD 9.0, the FreeBSD kernel
and world can be compiled using Clang on most of the
supported architectures. Work is ongoing to migrate
the ports infrastructure so that any port can also be
compiled with Clang. Details about architecture support,
link time optimizations, automatic test generation,
and links to additional resources can be found at
http://wiki.freebsd.org/BuildingFreeBSDWithClang.
More information about Clang can be found at http://
clang.llvm.org/ and more information about LLVM is
available from http://www.llvm.org/.

A video of Brooks Davis describing how the FreeBSD
Project has been actively working to incorporate tools from
the LLVM project into the base system is available at http://
www.youtube.com/watch?v=yVaNAm8jR_U. You can follow
the status of the ports infrastructure with regards to Clang at
http://wiki.freebsd.org/PortsAndClang.

Userland Ttrace
DTrace is a general purpose, lightweight tracing
framework that allows administrators, developers,
and users to investigate causes of system failure or
performance bottlenecks. FreeBSD introduced kernel-
level DTrace support in FreeBSD 8.0. The addition of
user-level DTrace suppport in 9.0 allows inspection of
userland software and its correlation with the kernel, thus

providing a much better picture of what exactly is going on
behind the scenes.

http://wiki.freebsd.org/DTrace provides examples for
using both kernel- and user-level DTrace on FreeBSD, as
well as links to other DTrace resources.

Filesystems and Storage
Highly Avaliable Storage (HAST)
The Highly Available Storage framework allows for
synchronous, block-level replication of any storage media
across several physically separated machines connected
by a TCP/IP network. HAST can be understood as a
network-based mirror, similar to Linux DRBD. When
combined with FreeBSD’s carp(4), HAST makes it possible
to build a highly available storage cluster that is resistant to
hardware failures.

HAST is file system and application independent and
can be combined with any existing GEOM class. In case
of a primary node failure, the cluster will automatically
switch to the secondary node, check and mount the UFS
file system or import the ZFS pool, and continue to work
without missing a single bit of data.

The FreeBSD Handbook describes how to configure HAST:
http://www.freebsd.org/doc/handbook/disks-hast.html.

SU+J
Journaled softupdates for UFS is now the default filesystem
type. It adds a light version of journaling to soft updates as
described in this technical paper: http://www.mckusick.com/
BSDCan/bsdcan2010.pdf. This significantly reduces boot
time after an improper shutdown as a background fsck only
needs to be run if there is a corruption of the journal log.

ZFSv28
FreeBSD 9.0 ships with ZFSv28. This version of ZFS
adds the following features:

• deduplication: the process of eliminating duplicate
copies of data. When enabled on datasets with
duplicate data (for example, virtual images or jails),
deduplication saves space and increases performance
because less data is written and stored.

• triple parity RAIDZ: RAIDZ3 offers three parity
drives and can operate in degraded mode if up to
three drives fail with no restrictions on which drives
can fail.

• zfs diff : command which describes which file
system level changes have occurred between two
snapshots.

• zpool split: allows an administrator to extract one disk
from each mirrored top-level vdev and use them to

http://wiki.freebsd.org/Hierarchical_Resource_Limits
http://wiki.freebsd.org/BuildingFreeBSDWithClang
http://clang.llvm.org/
http://clang.llvm.org/
http://www.llvm.org/
http://www.youtube.com/watch?v=yVaNAm8jR_U
http://www.youtube.com/watch?v=yVaNAm8jR_U
http://wiki.freebsd.org/PortsAndClang
http://wiki.freebsd.org/DTrace
http://www.freebsd.org/doc/handbook/disks-hast.html
http://www.mckusick.com/BSDCan/bsdcan2010.pdf
http://www.mckusick.com/BSDCan/bsdcan2010.pdf

01/2012 8

What’s New in FreeBSD 9.0

www.bsdmag.org 9

create a new pool with an exact copy of the data. The
new pool can then be imported on any machine.

• snapshot holds: permit users or applications to place
holds on snapshots to prevent them from being
deleted.

• zpool import -F: allows the administrator to rewind a
corrupted pool to an earlier transaction group.

• the ability to import zpool as read-only.

Generic GEOM I/O Scheduler Framework
This framework supports scheduling disk I/O requests in
a device independent manner in order to support multiple
disk I/O schedulers to be used on different I/O providers.
The framework provides a couple of sample scheduling
algorithms that use the framework and implements two
forms of anticipatory scheduling.

The ability to create different I/O schedulers allows
users to select the I/O scheduler best suited to the task.
This can increase responsiveness in certain kinds of I/O
workloads, such as a mix of sequential and random I/O.
Examples of how to use the provided schedulers can be
found at http://svnweb.freebsd.org/base/head/sys/geom/
sched/README?view=markup&pathrev=206497.

Changes to CAM and AHCI SATA
The new ATA/SATA driver supports AHCI-compliant
hardware, port multipliers, and NCQ (tagged queueing)
for increased performance on modern SATA drives.
Performance has been greatly increased, larger data
transfers are supported, and hot-plugging support is
much improved. ATA/SATA drives can now can be
enumerated and manipulated via camcontrol(8), just like
SCSI drives.

The cam(4) subsystem is now modularized and the
addition of the ATA/SATA modules allows the CAM
subsystem to grow into a framework for arbitrary
transports and protocols. It also allows drivers to be
written to support discrete hardware without jeopardizing
the stability of non-related hardware.

Changes to Event Timer Infrastructure
The new event timers infrastructure provides unified
APIs for writing event timer drivers and for choosing the
best possible drivers by machine independent code. It
provides support for both per-CPU and global timers in
periodic and one-shot modes for the i386 and amd64
architectures.

To improve performance in virtual machines and power
usage in laptops, dynamic tick mode is enabled by default,
replacing the periodic hardware timer interrupt ticking with
one-shot variable-time ticks. This saves CPU time which

would otherwise be spent handling timer interrupts which
have no work assigned to them. Tickless mode can be turned
off by setting the sysctl value of kern.eventtimer.periodic to
1. Technical details about dynamic tick mode can be found
at http://permalink.gmane.org/gmane.os.freebsd.architecht
ure/13276.

Networking
Five New TCP Congestion Control Algorithms
The Centre for Advanced Internet Architectures at
Swinburne University of Technology, with the support of the
Cisco University Research Program Fund at Community
Foundation Silicon Valley and the FreeBSD Foundation,
delivered enhancements to FreeBSD’s TCP stack in order
to support newer congestion control algorithms. These
enhancements included a modular framework for adding
future algorithms as well as new modular implementations
of the H-TCP, CUBIC, Vegas, HD, and CHD algorithms.

Each congestion control algorithm is implemented as a
loadable kernel module. Algorithms can be selected to suit
the application/network characteristics and requirements
of the host’s installation. The modular framework makes it
much easier for developers to implement new algorithms,
allowing FreeBSD’s TCP stack to be at the forefront of
advancements in this area, while still maintaining the
stability of its network stack.

Links to technical papers regarding the framework
and algorithms can be found at http://caia.swin.edu.au/
freebsd/5cc/.

“IPv6-Only”
FreeBSD has been on the leading edge of IPv6
development ever since FreeBSD 4.0 was released in
2000 with the KAME reference implementation of IPv4/
IPv6 networking support. In addition, the FreeBSD Project
has been serving releases from IPv6-enabled servers for
more than 8 years and FreeBSD’s website, mailing lists,
and developer infrastructure have been IPv6-enabled
since 2007.

Beginning with FreeBSD 9.0, no-IPv4 snapshots of
FreeBSD are available. By completely decoupling IPv6
from IPv4, early adopters and developers can determine
if “IPv6-ready” applications really are ready for IPv6 or if
bugs were hidden due to the ability to fallback on IPv4.
Providing an implementation of an IPv6-only kernel
without IPv4 support provides the FreeBSD Project
with the ability to test and fix such regressions while
encouraging other software developers to improve their
code for true IPv6 readiness. More information about
no-IPv4 versions of FreeBSD is available from http://
www.freebsd.org/ipv6/.

http://svnweb.freebsd.org/base/head/sys/geom/sched/README?view=markup&pathrev=206497
http://svnweb.freebsd.org/base/head/sys/geom/sched/README?view=markup&pathrev=206497
http://permalink.gmane.org/gmane.os.freebsd.architechture/13276
http://permalink.gmane.org/gmane.os.freebsd.architechture/13276
http://caia.swin.edu.au/freebsd/5cc/
http://caia.swin.edu.au/freebsd/5cc/
http://www.freebsd.org/ipv6/
http://www.freebsd.org/ipv6/

01/2012 8

What’s New in FreeBSD 9.0

www.bsdmag.org 9

To support IPv6-only, rtadvd(8) and rtsold(8) were
completely overhauled to support RFC 6106. rtsold
can now update /etc/resolv.conf using the openresolv
DNS management framework (http://roy.marples.name/
projects/openresolv). An optional kernel module is
available to provide Secure Neighbor Discovery protocol
(SeND) support; SeND is described in RFC 3971.

Continuing earlier efforts, more global options can now
be controlled on a per-interface base, such as the ability
to accept router advertisements on one interface while still
forwarding. This is needed to effectively run FreeBSD as
an IPv6 CPE device. The single /etc/rc.conf option ipv6_
cpe_wanif will correctly set all sysctls and interface options
to make creating a CPE as easy as possible.

High Performance SSH (HPN-SSH)
OpenSSH is network performance limited by statically
defined internal flow control buffers. These buffers often
end up acting as a bottleneck for network throughput
of SCP, especially on long and high bandwith network
links. HPN-SSH adds support for dynamically adjusted
buffers to allow the full use of the bandwidth of long fat
pipes such as 100Mbps or greater, trans-oceanic, or
trans-continental links. Bandwidth-delay products up to
64MB are also supported. This implementation includes
a multithreaded cipher implementation which makes such
bandwidth sustainable on the CPU side.

HPN is enabled by default in FreeBSD 9.0’s sshd and
several HPN options have been added to /etc/ssh/sshd_
config. These options, as well as some performance tips,
are described in http://svnweb.freebsd.org/base/head/
crypto/openssh/README.hpn?revision=224638&view=
markup.

Miscellaneous
Several other features are also worth mentioning:

• large-scale SMP support for systems with more
than 32 CPUs. Previously, the kernel structures
were unable to account for such a large number of
CPUs so this method implements extensible CPU
accounting. Yahoo! provided systems for testing
these changes.

• improved USB 3.0 support.
• the default NFS client and nfsd(8) now support

NFSv4. Backwards compatibility for older NFS clients
is provided with the oldnfs mount type.

• a new kernel-mode NFS lock manager has been
added, improving performance and behavior of NFS
locking. A new clear_locks(8) command has been
added to clear locks held on behalf of an NFS client.

• sysinstall has been replaced with bsdinstall. Its features
are described at http://wiki.freebsd.org/BSDInstall and
its usage is detailed in the FreeBSD Handbook: http://
www.freebsd.org/doc/en_US.ISO8859-1/books/hand
book/bsdinstall.html.

• the kernel now supports a new textdump(4) format
of kernel dumps. A textdump provides higher-level
information via mechanically generated/extracted
debugging output, rather than a simple memory
dump. This facility can be used to generate brief
kernel bug reports that are rich in debugging
information, but are not dependent on kernel symbol
tables or precisely synchronized source code.

• FreeBSD 9.0 can be installed on the Sony Playstation
3 using the instructions at http://people.freebsd.org/
~nwhitehorn/ps3/README.

• call and return rule actions were added to ipfw(8):
http://svnweb.freebsd.org/base?view=revision&revisi
on=223666.

Conclusion
With the release of FreeBSD 9.0, the FreeBSD Project
continues to innovate in the areas of security, compilers,
filesystems, and networking. You can find out more
information about the FreeBSD Project and download
FreeBSD 9.0 from freebsd.org.

DRU LAVIGNE
Dru Lavigne is author of BSD Hacks, The Best of FreeBSD
Basics, and The De�nitive Guide to PC-BSD. As Director of
Community Development for the PC-BSD Project, she leads the
documentation team, assists new users, helps to �nd and �x
bugs, and reaches out to the community to discover their needs.
She is the former Managing Editor of the Open Source Business
Resource, a free monthly publication covering open source and
the commercialization of open source assets. She is founder and
current Chair of the BSD Certi�cation Group Inc., a non-pro�t
organization with a mission to create the standard for certifying
BSD system administrators, and serves on the Board of the
FreeBSD Foundation.

http://roy.marples.name/projects/openresolv
http://roy.marples.name/projects/openresolv
http://svnweb.freebsd.org/base/head/crypto/openssh/README.hpn?revision=224638&view=markup
http://svnweb.freebsd.org/base/head/crypto/openssh/README.hpn?revision=224638&view=markup
http://svnweb.freebsd.org/base/head/crypto/openssh/README.hpn?revision=224638&view=markup
http://wiki.freebsd.org/BSDInstall
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/bsdinstall.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/bsdinstall.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/bsdinstall.html
http://people.freebsd.org/~nwhitehorn/ps3/README
http://people.freebsd.org/~nwhitehorn/ps3/README
http://svnweb.freebsd.org/base?view=revision&revision=223666
http://svnweb.freebsd.org/base?view=revision&revision=223666

01/2012 10

HOW TO Home Brew Captive Portal With OpenBSD

www.bsdmag.org 11

It’s called a captive portal, and we’re going to build one
of those using OpenBSD’s Packet Filter (pf). FreeBSD
can also use Packet Filter, so these instructions should

work for that OS, but I’ve not tested it. There are several
pre-built captive portal solutions for FreeBSD. Captive
portals for OpenBSD are more rare, so this is something
of a home-brew solution.

When I built this project, I used 172.16.0.0/24 as my
captive network. Then there is 192.168.0.0/24 which
is a non-captive network with a DSL modem/router at
192.168.0.254. The server has two NIC’s: xl0 (192.168.0.1)
and em0 (172.16.0.1). See illustration on Figure 1.

As you know, I run OpenBSD with Nginx. By default,
Apache is jailed with chroot on OpenBSD. The technique
that I’m going to describe won’t work if your web server
is jailed because we’re going to have PHP call for /sbin/

pfctl. The first thing we need to do is to allow that. I am
using a user called _php to run PHP in Fast CGI mode for
Nginx. If you’re using Apache with mod_php, then substitute
the user that httpd runs as. Use visudo to add the following
line to your sudoers file:

_php ALL=(ALL) NOPASSWD: /sbin/pfctl

We’ll want our server to provide DHCP for the captive
network (remember that it’s on em0).

echo ‘dhcpd_flags=”em0”’ >>/etc/rc.conf.local

touch /var/db/dhcpd.leases

Now we edit /etc/dhcpd.conf. Here’s what mine looks like:

Home Brew Captive
Portal With OpenBSD
Have you ever used a public wireless network that has a
splash screen such that you have to agree to certain terms
before going to the Internet?

Figure 1. Network Diagram

��������

���������������
�������������

������������
��������������

��������

����������

�������

�����������

�������������

������

01/2012 10

HOW TO Home Brew Captive Portal With OpenBSD

www.bsdmag.org 11

Launch the DHCP daemon:

dhcpd em0

We want IP forwarding, so edit /etc/sysctl.conf to
uncomment the following line (I’m not taking IPv6 into
account, but if you use IPv6 then you’ll know how to
enable that as well):

option domain-name-servers 8.8.8.8;

subnet 172.16.0.0 netmask 255.255.255.0 {

option routers 172.16.0.1;

range 172.16.0.100 172.16.0.199;

}

Listing 1. pf.conf

set skip on lo

pass # to keep state

pass out quick on xl0 proto udp from any to any port 53 nat-to xl0

pass in quick on em0 from <eula> to any

pass out quick on xl0 from <eula> to any nat-to xl0

pass in on em0 proto tcp from any to any port 80 rdr-to 172.16.0.1 port 80

Listing 2. index.php

<html><body>

<?php

$salt="somesalt";

$clientip=$_SERVER['REMOTE_ADDR'];

$clienthash=hash('sha256', $salt . $clientip);

?>

This is my captive portal. Press the button to accept the terms of this network.

<form action="auth.php" method="post">

<input type="hidden" name="myhash" value="<?php echo $clienthash ?>" />

<input type="hidden" name="myip" value="<?php echo $clientip ?>" />

<input type="submit" />

</form></body></html>

01/2012 12

HOW TO

net.inet.ip.forwarding=1

To turn on IP forwarding without rebooting so the system
reloads /etc/sysctl.conf we issue this command:

sysctl net.inet.ip.forwarding=1

It’s time to edit /etc/pf.conf. I’m going to use a table
that I’ll call eula to track the IP addresses of users who
have clicked the button to accept the terms of using
the network. The line that references UDP:53 allows
everybody to resolve DNS names. That will prevent users
from getting errors before they click through the portal
(Listing 1). Be sure to reload your firewall rules with:

pfctl -f /etc/pf.conf

That last line is the magic. Anyone whose IP address
is not in the eula table will be redirected to the web
server on the BSD box. As stated at the beginning of
this article, it’s already assumed that you have a working
PHP enabled web server that isn’t jailed.

When a user tries to go to http://somesite.com then
Packet Filter will redirect them to http://172.16.0.1 where
our splash screen will live. What if someone tries to go to
http://somesite.com/somepage? They’ll be redirected to
http://172.16.0.1/somepage which will yield a 404 error.
I can’t say how to fix this with Apache, but for Nginx, you
can fix this with a single line in the location / block of /etc/
nginx/nginx.conf:

try_files $uri $uri/ /index.php;

Now for some PHP voodoo. My examples are
extremely simple. You will want to make your own
fancy modifications for aesthetics, security, and code
elegance. In this example, a salted hash of the client’s IP
address is our only security. First, index.php: Listing 2.
Next, auth.php: Listing 3.

There is one last consideration. We probably want
authorization for Internet use to expire. Eight hours seems
like a good amount of time before an IP gets the splash
page again. In seconds, that’s 28800. Add the following to
/var/cron/tabs/root:

* * * * * /sbin/pfctl -t eula -T expire 28800 > /dev/null

Every minute, cron will remove IP addresses from the
eula table that are older than 8 hours. You’ve created
your own captive portal. Now all that’s left is for you to
start your own coffee shop!

Listing 3. auth.php

<html><body>

<?php

$salt="somesalt";

$clientip=$_SERVER['REMOTE_ADDR'];

$goodhash=hash('sha256', $salt . $clientip);

$myhash=$_POST['myhash'];

if ($myhash != $goodhash) { die(); }

exec ("sudo pfctl -t eula -T add " . $clientip);

?>

You may now use the Internet.

</body></html>

TOBY RICHARDS
Toby Richards has been a network administrator since 1997.
Each article comes straight from the notes that he takes when
doing a new project with *BSD. Toby recommends bsdvm.com
for your hosting needs because they provide console access to
your virtual machine.

http://somesite.com
http://somesite.com/somepage
http://172.16.0.1/somepage

http://www.linagora.com/jobs

01/2012 14

HOW TO Puppet on FreeBSD

www.bsdmag.org 15

Using Puppet to manage server’s configurations yield
these benefits:

• automated server installation
• mass deployment of changes to servers
• maintain server state consistency

Puppet can be use to automate software installation and
configuration when deploying servers. This is particularly
helpful when deploying many servers with similar service
configurations (e.g. sudoers, ssh daemon, web services
and others).

Puppet is also useful in situations where a script or
program needs to be deployed to a group of servers. After
the initial deployment, changes can also be push from
the Puppet master to these group of servers with minimal
effort.

Part of a system administrator’s job is to make sure
that the server state is in desirable form; for instance ssh
daemon should always ask for public keys and password
authentication should be disabled. A system administrator
have to personalize configuration files and set hem up
accordingly in all servers, and services (e.g. ssh, ntp,
named ...) should always be up or should restarted to
load the changes.

Puppet is written in Ruby and it is Apache licensed (since
2.7.6. previously it was GPL licensed). It is a fork from

cfEngine, another powerful configuration management
tool. Puppet is relatively easy to pickup and start using
due to its declarative language.

Instead of reading through the typical lengthy language
guide or tutorial to learn about Puppet, this article will go
through the basic steps of how to setup the Puppet client/
server model. Then we will cover common scenarios, to
get an idea about how Puppet works.

The Picture
In this section, the FreeBSD servers involved in the
Puppet client/server model should look (be installed) like
this:

• the installation and configuration of Puppet on master
and agent. This is just about SSL certificate signing
between Puppet master and it’s agent.

• ports installation using FreeBSD Ports system, to
deploy consistent sudoers configuration and ssh
daemon to Puppet agent. Then setup and configure
Apache web server, automatically.

Puppet on FreeBSD

This article aims to jumpstart a system administrator on how
to use Puppet (configuration management tool), to manage
server’s configurations, particularly on FreeBSD.

What you will learn…
• what is Puppet,
• how to deploy servers using Puppet,
• various scenario in server deployment using Puppet.

What you should know…
• basic network con�guration in FreeBSD,
• basic knowledge FreeBSD port system.

Listing 1. Installation of Puppet

cd /usr/ports/sysutils/puppet

make install clean

01/2012 14

HOW TO Puppet on FreeBSD

www.bsdmag.org 15

Disclaimer: The configuration files included in this article
are bare minimum to bring up Puppet master/agent and
it’s controlled services, they are might NOT be suitable for
production. Use at your own risk!

How Puppet Works
Puppet uses the relationship of master and agent to
control its client from the server. The Puppet master will
push the instructions to the agent and the agent will then
perform the instructions.

These actions are termed resource. Resources can be
group into classes to form more manageable functions.
These resources are then performed on the node, or agent.

There are various resource types, for example file
resources, package resources, user resources and
more.

Puppet behaviour:

• Puppet uses SSL to secure the communications
between master and agent.

• Puppet master resource permission are defined in the
file /usr/local/etc/puppet/auth.conf.

• Puppet master configuration file is /usr/local/etc/

puppet/puppet.conf.
• Puppet agent do NOT need /usr/local/etc/puppet/

puppet.conf to run properly.
• Puppet error messages are sorted into /var/log/

messages.

The below tree structure shows how the files and
directories needed for Puppet master to function:

/usr/local/etc/puppet

 ├── auth.conf

 ├── files

 │ ├── httpd.conf

 │ ├── sshd_config

 │ └── sudoers

 ├── fileserver.conf

 ├── manifests

 │ ├── classes

 │ │ ├── resource_group.pp

 │ │ └── something.pp

 │ └── site.pp

 └── puppet.conf

Part I: setup Puppet master and agent
Preparation of puppet-master.example.com: Listing 1.
Setup and configuration: Listing 2. Configure the Puppet
Master: Listing 3.

In order to achieve the above, we’ll break the setup into
the following parts:

Part I: setup Puppet master and agent

• installation of Puppet and other utilities
• setup Puppet’s configuration files:

• /usr/local/etc/puppet/puppet.conf

• /usr/local/etc/puppet/fileserver.conf

• /usr/local/etc/puppet/manifests/site.pp

• /usr/local/etc/puppet/manifests/classes/*.pp

• /usr/local/etc/puppet/auth.conf

• /etc/rc.conf

• certificate signing of Puppet master and agent

Part II: various deployment scenarios

• use Puppet to setup agent’s sudoers configuration
• setup and configure ssh daemon
• setup and configure Apache 2.2 web server

These servers will perform the following roles:

• puppet-master.example.com – this server will be
the Puppet master. It will responsible to push confi-
gurations to the Puppet agent.

• puppet-agent.example.com – the Puppet agent.
It will receive Puppet master’s instruction and
deploy it accordingly. In this case, deploy sudoer
configurations, ssh daemon and Apache web server.

By now, you should have noticed that the server
requires FQDN internet name. The Puppet master will
be named as puppet-master.example.com and puppet-
agent.example.com.

Listing 2. Skeleton �les creation

mkdir -p /usr/local/etc/puppet/manifests/classes

mkdir -p /usr/local/etc/puppet/files

touch /usr/local/etc/puppet/files/sudoers

touch /usr/local/etc/puppet/files/sshd_config

touch /usr/local/etc/puppet/files/httpd.conf

touch /usr/local/etc/puppet/manifests/classes/

resource_group.pp

touch /usr/local/etc/puppet/fileserver.conf

touch /usr/local/etc/puppet/manifests/site.pp

touch /usr/local/etc/puppet/manifests/classes/

resource_group.pp

01/2012 16

HOW TO Puppet on FreeBSD

www.bsdmag.org 17

Change the following parameters /usr/local/etc/puppet/
puppet.conf:

• factsource = puppet://puppet-master.example.com/facts/

• pluginsource = puppet://puppet-master.example.com/plugins

Create the following files with it’s contents: Listing 4 and
Listing 5.

Finally, start Puppet master to listen for certificate
signing request so that it can push instructions to Puppet
agent.

In Listing 5, various Puppet agent hostnames are
defined and specify what resources are being push
out. In this initial setup, there’s nothing. We’ll looking
into this section again when fulfilling various scenarios.
Preparation of puppet-agent.example.com: Listing 7-9.

Initiate a certificate signing session from the Puppet
agent, to the Puppet master:

puppet agent -v --server puppet-master.example.com --

waitforcert 60 --test

While this is happening, sign the certificate in puppet-
master.example.com: Listing 10.

When the certificate is signed, the Puppet agent’s
certificate signing session will terminate. Wait for it to
terminate itself.

Start Puppet agent in puppet-agent.example.com by
adding the following to /etc/rc.conf: Listing 11.

Start Puppet agent so that it can poll instructions from
Puppet master:

/usr/local/etc/rc.d/puppet start

Now that the Puppet master and agent are more or
less setup, do make sure that there’s no error message
happening in /var/log/messages.

Part II: Various Deployment Scenario
Scenario 1: using puppet to setup agent’s sudoers
con�guration
In puppet-master.example.com, create a customized
sudoer file, which eventually will be deployed to Puppet

Listing 3 Con�guration of Puppet Master

puppet master --genconfig > /usr/local/etc/puppet/

puppet.conf

cp /usr/local/etc/puppet/auth.conf-dist /usr/local/

etc/puppet/auth.conf

Listing 4 /usr/local/etc/puppet/�leserver.conf

[files]

 path /usr/local/etc/puppet/files

 allow *.example.com

Listing 5. /usr/local/etc/puppet/manifests/site.pp

import "classes/*.pp"

filebucket { main: server => 'puppet-

master.example.com' }

File { backup => main }

Exec { path => "/usr/bin:/usr/sbin/:/bin:/sbin" }

node 'puppet-agent.example.com' { }

Listing 6. Start the Puppet master

echo 'puppetmaster_enable="YES"' >> /etc/rc.conf

/usr/local/etc/rc.d/puppetmaster start

Listing 7. Installation of Puppet agent and some dependency

cd /usr/ports/sysutils/puppet

make install clean

cd /usr/ports/ports-mgmt/portupgrade

make install clean

Listing 8. Setup and con�guration of Puppet agent

hostname puppet-agent.example.com

Listing 9. /usr/local/etc/puppet/auth.conf

path /run

method save

allow puppet-master.example.com

Listing 10 Signing the certi�cate in Puppet master

puppet cert --list --all

puppet cert --sign puppet-agent.example.com

Listing 11. /etc/rc.conf

puppet_enable="YES"

puppet_flags="-v --listen --server puppet-

master.example.com"

01/2012 16

HOW TO Puppet on FreeBSD

www.bsdmag.org 17

agent: Listing 12. Create a class, to group these
resources: Listing 13.

Include this resource (in the class) in a node (Puppet
agent) so that Puppet master can push it to the Puppet
agent: Listing 14.

Activate this change by kicking the Puppet agent. It
willthen retrieve the catalog and perform the necessary
actions on the agent:

puppet kick puppet-agent.example.com

Once Puppet agent refreshes these configurations, the
customized sudoers file should be downloaded into /
usr/local/etc/sudoers of the puppet-agent.example.com.
Check the file /usr/local/etc/sudoers and see if
it is identical to the one we create in puppet-
master.example.com. This scenario is to demonstrate

that Puppet is able to push configuration files from the
Puppet master to it’s agent.

In Listing 13, the resource type file is included in the
class named sudoers. Whenever a node need to use
this resource, we can use the syntax include in the class
sudoers. This same resource can be use multiple times
onto different node.

Also, the keyword source specifies the source of the file
to be place in /usr/local/etc/sudoers. This URL should be
absolute to the parameter [files] in Listing 4.

For more information on resource types, check out http://
docs.puppetlabs.com/references/stable/type.html.

Scenario 2: setup and con�gure ssh daemon
Similarly, services and configuration files can be managed
from Puppet master. This is how to deploy a customized
ssh daemon with configuration file, and push it to Puppet

Listing 12. /usr/local/etc/puppet/�les/sudoers

root ALL=(ALL) ALL

bob ALL=(ALL) NOPASSWD: ALL

joe ALL=(ALL) NOPASSWD: ALL

Listing 13. /usr/local/etc/puppet/manifests/classes/resource_
group.pp

class sudoers {

 file { "/usr/local/etc/sudoers":

 ensure => file,

 owner => root,

 group => wheel,

 mode => 440,

 source => "puppet:///files/sudoers",

 }

}

Listing 14. /usr/local/etc/puppet/manifests/site.pp

node 'puppet-agent.example.com' {

 include sudoers

}

Listing 15. /usr/local/etc/puppet/�les/sshd_con�g

PermitRootLogin no

StrictModes yes

PubkeyAuthentication yes

PermitEmptyPasswords no

Listing 16. /usr/local/etc/puppet/manifests/classes/resource_
group.pp

class sshd {

 owner => root,

 group => wheel,

 mode => 0644,

 source => "puppet:///files/sshd_config",

 }

 service { 'sshd_services':

 ensure => running,

 name => "sshd",

 enable => true,

 hasrestart => true,

 hasstatus => true,

 subscribe => File['/etc/ssh/sshd_config'],

 }

}

Listing 17. /usr/local/etc/puppet/manifests/site.pp

node 'puppet-agent.example.com' {

 include sudoers

 include sshd

}

http://docs.puppetlabs.com/references/stable/type.html
http://docs.puppetlabs.com/references/stable/type.html

01/2012 18

HOW TO Puppet on FreeBSD

www.bsdmag.org 19

Listing 18. /usr/local/etc/puppet/�les/httpd.conf

ServerRoot "/usr/local"

Listen 80

LoadModule authz_host_module libexec/apache22/mod_authz_

host.so

LoadModule include_module libexec/apache22/mod_

include.so

LoadModule log_config_module libexec/apache22/mod_log_

config.so

LoadModule mime_module libexec/apache22/mod_mime.so

LoadModule dir_module libexec/apache22/mod_dir.so

User www

Group www

ServerAdmin webmaster@example.com

ServerName example.com:80

DocumentRoot "/usr/local/www/apache22/data"

<Directory />

 AllowOverride None

 Order deny,allow

 Deny from all

</Directory>

<Directory "/usr/local/www/apache22/data">

 Options Indexes FollowSymLinks

 AllowOverride None

 Order allow,deny

 Allow from all

</Directory>

<IfModule dir_module>

 DirectoryIndex index.php index.htm index.html

</IfModule>

ErrorLog "/var/log/httpd-error.log"

LogLevel warn

DefaultType text/plain

<IfModule mime_module>

 TypesConfig etc/apache22/mime.types

 AddType application/x-compress .Z

 AddType application/x-gzip .gz .tgz

 AddType application/x-httpd-php .php .aspx

 AddType application/x-httpd-php-source .phps

</IfModule>

Include etc/apache22/extra/httpd-default.conf

Include etc/apache22/Includes/*.conf

Listing 19. /usr/local/etc/puppet/manifests/classes/resource_
group.pp

class apache22 {

 package { 'www/apache22':

 ensure => installed,

 provider => ports,

 }

 file { "/usr/local/etc/apache22/httpd.conf":

 owner => root,

 group => wheel,

 mode => 0640,

 source => "puppet:///files/httpd.conf",

 require => Package['www/apache22'],

 }

 service { 'apache22_service':

 ensure => running,

 name => "apache22",

 enable => true,

 hasrestart => true,

 hasstatus => true,

 subscribe => File['/usr/local/etc/apache22/

httpd.conf'],

 }

}

Listing 20. /usr/local/etc/puppet/manifests/site.pp

node 'puppet-agent.example.com' {

 include apache22

 include sudoers

 include sshd

01/2012 18

HOW TO Puppet on FreeBSD

www.bsdmag.org 19

agent. Then the ssh daemon in Puppet agent will be
restarted, for the changes to take effect.

In puppet-master.example.com, create a customized
ssh daemon configuration file: Listing 15.

Update Puppet class file so that this resource can be
use later: Listing 16.

Similarly, include this resource onto a node, so that
Puppet master can push it onto it: Listing 17.

kick the Puppet agent in order to refresh its catalog:

/usr/local/etc/rc.d/puppet restart

After the Puppet agent is refreshed, the ssh daemon
configuration files should be downloaded to the puppet-
agent.example.com and ssh daemon restarted.

In the resource type service under class sshd, the
parameter ensure will make sure that the service name
sshd is running. The parameter subscribe also make sure
that whenever the file /etc/ssh/sshd_config has changes,
it’ll restart this service.

For more info on other available parameters, visit http://
docs.puppetlabs.com/references/2.7.6/metaparameter.html.

As for services supported under FreeBSD, visit http://
docs.puppetlabs.com/references/2.7.6/type.html#service.

Scenario 3:
setup and con�gure Apache 2.2 web server
In this scenario, the Puppet master will instruct the agent
to install Apache 2.2 and download the desire customized
httpd.conf to the Puppet agent. Then, the Apache 2.2 web
service will be restart for the new settings to take effect.

In puppet-master.example.com, create a customized
Apache configuration file (Listing 18). Once again, create
a resource in the class file: Listing 19.

Similarly, include this resource so that Puppet master
can push it to the Puppet agent: Listing 20.

kick the Puppet agent:

/usr/local/etc/rc.d/puppet restart

After Puppet agent is refreshed, Apache 2.2 should be
installing, with the configuration files downloaded into
the node puppet-agent.example.com and the service
apache22 be restarted. This would probably take
awhile as it would need to download the necessary
files and start the installation through the FreeBSD
port system.

In this scenario, we’ve cover two new parameter
for resource types, namely provider and require. The
parameter provider tells Puppet to use ports (source)
instead of packages (pkg) to install software. As for

require, this is to tell Puppet agent that the software
Apache22 is to be installed before applying the file /usr/
local/etc/apache22/httpd.conf and restart the web service
apache22.

In the above setup and scenarios, Puppet demonstrated
that it is capable of deploying configuration files and
services. Puppet can be used in many more ways in
lighten the Ssystem administrator’s job when deploying
new installation, pushing configuration files and actions
to servers, and streamlining policy across servers. After
reading this article, I hope that you’ll get an idea on how
Puppet can help in configuration management as well as
managing FreeBSD servers.

On the Web
• http://docs.puppetlabs.com/ – Puppet Labs Documentation,
• http://docs.puppetlabs.com/learning/ – Learning Puppet.

EDWARD TAN
The author’s day-to-day job is administrating a bunch of servers
running on FreeBSD. In his free time, he blogs about techie stuff
at http://psybermonkey.net, learns about Perl and thinks about
how to contribute back to the FreeBSD community.

http://docs.puppetlabs.com/references/2.7.6/metaparameter.html
http://docs.puppetlabs.com/references/2.7.6/metaparameter.html
http://docs.puppetlabs.com/references/2.7.6/type.html#service
http://docs.puppetlabs.com/references/2.7.6/type.html#service
http://docs.puppetlabs.com/
http://docs.puppetlabs.com/learning/
http://psybermonkey.net

01/2012 20

HOW TO FreeBSD IPS With Snort Inline

www.bsdmag.org 21

Snort inline is normally thought of as a feature
reserved for Linux with iptables integration. With
the use of divert sockets, processing of network

traffic is diverted from ipfw to a userland process by
listening on a specific diverted port. Snort is configured
to listen on this divert port to process the packets based
on the configured signatures. Depending on whether a
signature match occurs, Snort either allows the traffic, or
proceeds to silently drop or close the connection with a
TCP reset. The prevention action is configured in each of
the Snort signatures.

This setup requires two installs of FreeBSD 8.2 to be
configured on a network . VirtualBox is used to setup the
IPS as one virtual machine with the second FreeBSD VM
networked as shown in Figure 1.

Both of the FreeBSD VM’s should be setup with the i386
minimal install including the ports tree (See FREEBSD-
INSTALL for installation instructions). The default

FreeBSD kernel for 8.2 includes the ability to use divert
sockets, but the module needs to be enabled in order
to use the functionality. Listing 1 shows the entry in the
/boot/loader.conf file on the FreeBSD-IPS install required
for divert socket functionality.

Listing 2 details the necessary steps for building Snort
with some minor changes to the default configuration.
The alert_syslog output plugin is used to demonstrate
the capabilities of the IPS instead of using barnyard2
which should always be used in production for processing
unified2 output generated by Snort.

In order to demonstrate the ability of Snort to block
attacks, Apache is installed to provide a network service
to attack. Listing 3 details the installation of apache22 with
default settings.

One of the most important settings to configure is
the divert socket firewall rule which is required to send
packets to Snort for processing. Listing 4 shows the
firewall rules to use with ipfw. The rule file should be saved

FreeBSD
IPS With Snort Inline
A number of articles have been written covering the basic
configuration of Snort in IDS mode on the different BSD
operating systems. One feature that is not typically discussed
is Snort’s ability to integrate with ipfw that allows for inline IPS
mode on FreeBSD. This article covers the basic configuration of
Snort in IPS mode on a FreeBSD server.

What you will learn…
• How to con�gure Snort in IPS mode on a FreeBSD server.
• How to setup Snort rules to block malicious traffic.

What you should know…
• Familiarity with compiling code and installing FreeBSD ports.
• Basic knowledge of Network Security tools, speci�cally IDS/IPS
• Familiarity with ipfw.

Listing 1. The /boot/loader.conf setting required for the FreeBSD-
IPS to use divert sockets

echo 'ipdivert_load="YES"' >> /boot/loader.conf

Figure 1. Network setup including the FreeBSD Snort setup

FreeBSD Attacker FreeBSD Attacker witch
Apache, Snort and ipfw setup
with divert socket port

192.168.1.22/24 192.168.1.21/24

01/2012 20

HOW TO FreeBSD IPS With Snort Inline

www.bsdmag.org 21

Listing 2. Install prerequisite ports and download Snort with DAQ to build with ipfw divert socket support. The following steps use -DBATCH
and assume the default settings for each port

cd /usr/ports/ftp/wget

make -DBATCH install clean

rehash

cd /usr/ports/textproc/flex

make -DBATCH install clean

cd /usr/ports/devel/pcre

make -DBATCH install clean

cd /usr/ports/net/libdnet/

make -DBATCH install clean

mkdir /usr/src/snort && cd /usr/src/snort

wget http://www.snort.org/dl/snort-current/daq-

0.6.2.tar.gz -O daq-0.6.2.tar.gz

tar xzf daq-0.6.2.tar.gz

cd daq-0.6.2

./configure

make

make install

wget http://www.snort.org/dl/snort-current/snort-

2.9.2.tar.gz -O snort-2.9.2.tar.gz

cd snort-2.9.2

./configure --enable-ipv6 --enable-gre --enable-mpls --

enable-targetbased --enable-decoder-

prepocessor-rules \

--enable-ppm --enable-perfprofiling --enable-zlib --

enable-active-response --enable-

normalizer --enable-reload \

--enable-react --enable-flexresp3

make

make install

mkdir -p /usr/local/etc/snort

cp /usr/src/snort/snort-2.9.2/etc/*.conf* /usr/local/

etc/snort/

cp /usr/src/snort/snort-2.9.2/etc/*.map /usr/local/etc/

snort/

mkdir -p /usr/local/lib/snort_dynamicrules/

mkdir -p /usr/local/etc/snort

mkdir -p /usr/local/etc/snort/rules

mkdir -p /usr/local/etc/snort/so_rules

mkdir -p /usr/local/etc/snort/preproc_rules

mkdir -p /var/log/snort

mkdir -p /var/log/barnyard2

touch /usr/local/etc/snort/rules/local.rules

sed -i '' "s/ipvar HOME_NET any/ipvar HOME_NET \

[192.168.1.21\/32\]/" /usr/local/

etc/snort/snort.conf

sed -i '' 's/ipvar EXTERNAL_NET any/ipvar EXTERNAL_NET

\[!\$HOME_NET\]/' /usr/local/etc/

snort/snort.conf

sed -i '' 's/var RULE_PATH \.\.\/rules/var RULE_PATH

rules/' /usr/local/etc/snort/

snort.conf

sed -i '' 's/var SO_RULE_PATH \.\.\/so_rules/var SO_

RULE_PATH so_rules/' /usr/local/etc/

snort/snort.conf

sed -i '' 's/var PREPROC_RULE_PATH \.\.\/preproc_rules/

var PREPROC_RULE_PATH preproc_rules/

' /usr/local/etc/snort/snort.conf

sed -i '' '/^include \$RULE_PATH\/.*.rules$/d' /usr/

local/etc/snort/snort.conf

echo "output alert_syslog: LOG_DAEMON LOG_ALERT" >>

/usr/local/etc/snort/snort.conf

echo 'include $RULE_PATH/local.rules' >> /usr/local/etc/

snort/snort.conf

Listing 3. Install apache22 from the ports tree

cd /usr/ports/www/apache22/

make -DBATCH install clean

Listing 4. Creating the �le/etc/rc.�rewall-ips (Note: Additional rules
are added for ICMP, TCP/80 and UDP/53 to pass the traffic if it is not
blocked by Snort)

cat << EOF > /etc/rc.firewall-ips;

ipfw -q flush

ipfw -q add 01100 divert 8000 ip4 from any to any

ipfw -q add 01200 allow tcp from any to me 22 in via em0

ipfw -q add 01300 allow tcp from any to me 80 in via em0

ipfw -q add 01400 allow udp from any to me 53 in via em0

ipfw -q add 01500 allow icmp from any to any

ipfw -q add 01600 allow ip4 from any to any

EOF

01/2012 22

HOW TO FreeBSD IPS With Snort Inline

www.bsdmag.org 23

Listing 5. Creating the snort rc script and adding startup
information to /etc/rc.conf.local for apache22 and Snort

cat << EOF > /usr/local/etc/rc.d/snort;

#!/bin/sh

\$FreeBSD\$

PROVIDE: snort

REQUIRE: LOGIN

KEYWORD: shutdown

Add the following lines to /etc/rc.conf.local or /etc/

rc.conf

to enable this service:

snort_enable (bool): Set to NO by default.

Set it to YES to enable snort.

snort_config (path): Set to /usr/local/etc/snort/

snort.conf

by default.

. /etc/rc.subr

name="snort"

rcvar=\${name}_enable

command=/usr/local/bin/\${name}

load_rc_config \$name

: \${snort_enable="NO"}

: \${snort_config="/usr/local/etc/snort/snort.conf"}

command_args="--pid-path /var/run --create-pidfile --

daq=ipfw -Q -D -k none -c \$snort_

config"

run_rc_command "\$1"

EOF

chmod 555 /usr/local/etc/rc.d/snort;

echo 'accf_http_load="YES"' >> /boot/loader.conf

echo 'apache22_enable="YES"' >> /etc/rc.conf.local

echo 'snort_enable="YES"' >> /etc/rc.conf.local

Listing 6. Adding the /etc/rc.conf settings to start ipfw when
booting the system

echo 'firewall_enable="YES"' >> /etc/rc.conf

echo 'firewall_script="/etc/rc.firewall-ips"' >> /etc/rc.conf

Listing 7. Creating a signature to block an attempt to retrieve /etc/
passwd

cat << EOF >> /usr/local/etc/snort/rules/local.rules;

This signature looks for an attempt to retrieve the

/etc/passwd file with a web request.

block tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS

(msg:"HTTP FreeBSD-ATTACKER /etc/

passwd attempt"; flow:established,to_

server; content:"/etc/passwd";

http_uri; nocase; classtype:

attempted-admin; sid:2200001; rev:

1;)

EOF

Listing 8. Command line output from the FreeBSD-Attacker system
trying to attack the Apache server

FreeBSD-Attacker# printf "GET / HTTP/1.1\r\nHost:

192.168.1.21\r\nUser-Agent: Netcat\

r\nContent-type: text/html\r\n\r\n"

| nc -vvnn 192.168.1.21 80

Connection to 192.168.1.21 80 port [tcp/*] succeeded!

HTTP/1.1 200 OK

Date: Sat, 17 Dec 2011 06:20:26 GMT

Server: Apache/2.2.17 (FreeBSD) mod_ssl/2.2.17 OpenSSL/

0.9.8q DAV/2

Last-Modified: Sat, 20 Nov 2004 20:16:24 GMT

ETag: "ba199-2c-3e9564c23b600"

Accept-Ranges: bytes

Content-Length: 44

Content-Type: text/html

<html><body><h1>It works!</h1></body></html>FreeBSD-

Attacker#

FreeBSD-Attacker# printf "GET /etc/passwd HTTP/1.1\r\

nHost: 192.168.1.21\r\nUser-Agent:

Netcat\r\nContent-type: text/html\r\

n\r\n" | nc -vvnn 192.168.1.21 80

Connection to 192.168.1.21 80 port [tcp/*] succeeded!

01/2012 22

HOW TO FreeBSD IPS With Snort Inline

www.bsdmag.org 23

as /etc/rc.firewall-ips to differentiate it from the standard
/etc/rc.firewall rule file distributed with FreeBSD.

Listing 5 creates the necessary Snort rc script to be
placed in /usr/local/etc/rc.d. With the local settings in /
etc/rc.conf.local, Snort and apache22 will automatically
start at boot.

Listing 6 adds the necessary /etc/rc.conf entries to load
the custom firewall rules when booting the FreeBSD-IPS
VM.

There is an important issue to keep in mind when using
divert sockets with ipfw. If Snort is not running to process
packets, all of the traffic will be dropped as it sent to the
divert socket port with nothing to redirect the packet back
to the other ipfw rules for processing.

Normally, a Snort signature contains the alert rule
option which will generate an alert but take no action in
preventing the packet from reaching the target. In order to
block the packet, the block or drop rule option is required.
Listing 7 creates an HTTP signature to block traffic based
on the presence of a string in the network traffic.

Rebooting the FreeBSD-IPS VM will start Apache,
Snort and will setup the firewall to work with Snort inline.
Once the system has started up, the FreeBSD-Attacker
system should be able to ping the IPS sensor. In order to
demonstrate the IPS, the FreeBSD-Attacker VM will use
printf and netcat to make an HTTP request to the Apache
server. Listing 8 shows a valid HTTP request, followed by
an attempt to retrieve the Apache server.

The first request was passed to the Apache web server
and was answered with an HTTP 200 OK response
header. The second request included the /etc/passwd
string in the URL, which Snort blocked and did allow to
be processed by the Apache server. Listing 9 shows the

log entry from /var/log/messages as Snort was setup to use
syslog for logging.

This article presents just the basics of setting up an
inline solution using Snort and FreeBSD. Complex setups
can include setting up a private network sitting behind the
FreeBSD-IPS thereby protecting a network segment from
attacks. In this example, only a single signature was used
to demonstrate the functionality of blocking attacks. There
are freely available rulesets such as Emerging Threats
along with the registered ruleset available from Sourcefire
that can be used to protect a system or network from
attacks.

Listing 9. Snort log entry for the blocked attack from /var/log/messages

Dec 17 01:20:49 FreeBSD-IPS snort[838]: [1:2200001:1] HTTP FreeBSD-ATTACKER /etc/passwd attempt [Classification:

Attempted Administrator Privilege Gain] [Priority: 1] {TCP} 192.168.1.22:17123 -> 192.168.1.21:

80

References
• FREEBSD-INSTALL: http://www.freebsd.org/doc/handbook/install-start.html
• FreeBSD-snort_inline: http://freebsd.rogness.net/snort_inline/
• FreeBSD IPFW: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/�rewalls-ipfw.html
• FreeBSD Inline Forum Post: https://forums.snort.org/forums/support/topics/snort-inline-on-freebsd-ipfw
• Snort: http://www.snort.org
• Emerging Threats Rules: http://www.emergingthreats.net

MICHAEL SHIRK
Michael Shirk is a BSD zealot who has worked with OpenBSD and
FreeBSD for over 6 years. He works in the security community
and supports Open-Source security products that run on BSD
operating systems. The author wishes to thank J. J. Cummings
for his assistance with testing this article.

http://www.freebsd.org/doc/handbook/install-start.html
http://freebsd.rogness.net/snort_inline/
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls-ipfw.html
https://forums.snort.org/forums/support/topics/snort-inline-on-freebsd-ipfw
http://www.snort.org
http://www.emergingthreats.net

01/2012 24

ADMIN malloc(9) The Kernel’s General Purpose Memory Allocator

www.bsdmag.org 25

Before 4.3BSD, the kernel had several different
mechanisms for handling requests for memory,
each specialized for the particular type of

allocation. Developing new allocation mechanisms to
meet the unique demands of new kernel services was
producing complexity and reducing efficiency. The new
kernel memory allocator, malloc(9), replaced all other
memory allocators in 4.3BSD. Its design, based upon
known patterns of memory usage, proved to be both
time and space efficient. It created a single, easy to use
interface, similar to the malloc(3) and free(3) functions
found in the familiar C library. The original design by
Marshall Kirk McKusick and Michael Karels is described in
the paper Design of a General Purpose Memory Allocator
for the 4.3BSD Kernel, (Proceedings of the San Francisco
USENIX Conference, June 1988)

FreeBSD, NetBSD and OpenBSD still use the malloc(9)
interface for dynamically allocating kernel memory.
Its current usage however is limited to requests from
subsystems requiring memory of arbitrary sizes. Frequent
allocations for fixed size, single purpose pieces of memory
are usually handled by dedicated kernel memory pools or
slab allocators.

This article gives an overview of malloc(9) and its
corresponding function free(9) and explains how this
type of dynamically allocated memory is managed within
the kernel. Although many of the high level concepts are

the same across the BSD distributions, the lower level
implementations differ enough that a comprehensive
overview of malloc(9) across all BSD derivatives would
exceed the scope of this article. It should be assumed
therefore that everything is OpenBSD specific unless
explicitly stated otherwise.

The collection of kernel memory usage statistics for
malloc(9)/free(9) is set by the KMEMSTATS option
when building the kernel. OpenBSD turns this option on
by default. The statistics themselves are accessible to
userland programs via the sysctl(3,8) facility. The vmstat
utility queries sysctl to gather relevant information
which it then displays to the user. On OpenBSD, the
systat(1) utility also displays this information with the
added advantage of periodically updating the output
similar to the well known top(1) utility. The particular
systat(1) views discussed in this article are the malloc
and buckets view.

A Bit About How Kernel Memory is Organized
The total available memory on a given system is divided
into two parts: memory which is designated for userland
programs and memory which is dedicated for exclusive
use by the kernel. Kernel memory is inaccessible to user
lever programs.

Within the range of kernel memory are submaps
– segregated, contiguous regions set aside for specific

malloc(9)

The release of 4.3BSD in 1988 introduced a new memory
allocation mechanism intended to be general enough to
effectively meet the needs of diverse kernel subsystems
requiring dynamic memory allocation.

What you will learn…
• dynamic kernel memory allocation
• vmstat output for kernel memory usage statistics

What you should know…
• A page of memory – a �xed sized piece of memory (typically 4k in

size) used by the virtual memory management system.

The Kernel’s General Purpose Memory Allocator

01/2012 24

ADMIN malloc(9) The Kernel’s General Purpose Memory Allocator

www.bsdmag.org 25

The Implementation
On OpenBSD, malloc(9) and free(9) are the only two
functions which dynamically allocate and free general
purpose memory.

malloc(9) takes three arguments: the size of memory
requested, the subsystem which is requesting the
memory and a set of four possible flags, three of which
indicate what should occur if malloc(9) is unable to
immediately satisfy the request. The usual case is when
the subsystem making the request is already using the
maximum memory it is allowed have. If the M_WAIT flag
is set, malloc(9) will sleep until the subsystem returns
enough memory to bring its total memory usage below the
maximum threshold, whereupon it will then wake up and
return the requested memory. Alternatively, the M_NOWAIT
flag tells malloc(9) not to sleep but rather to immediately
indicate failure by returning NULL.

A third flag, M_CANFAIL indicates how malloc should fail if
the M_WAIT flag is set, but certain rare conditions prevent
it from be able to return the requested memory. This can
occur if there is no more free memory available in the
malloc arena. In such a case, if M_CANFAIL is set, malloc(9)
will return NULL to indicate failure; otherwise the system
will panic with the error message malloc: out of space in
kmem_map.

The free(9) function is used by the subsystem to
return memory it no longer needs. free(9) takes only two
arguments: the address of the memory to be returned and
the subsystem returning the memory.

Memory allocated from the malloc arena is organized
as a set of lists, commonly referred to as buckets. Each
bucket is a single list (called the free-list) of equally
sized pieces of memory, and there is one bucket for
each power of two, ranging from 16 bytes (the minimum
size) to 524288 bytes (the maximum size). The malloc(9)
function takes the size argument, rounds it up to the next
power of two and allocates a piece of memory from the
appropriate bucket (i.e., free list). For example, a request
for 23 bytes of memory will take memory from the bucket
containing 32 byte pieces. When a subsystem calls
free(9), the memory is put back onto the free list for the
appropriate bucket where it can be re-used again for
later requests.

When the system initializes the malloc arena, the free
lists in all the buckets are empty. The first call to malloc(9)
will cause a low level memory allocation. For buckets
that hold items less than the size of a page, this lower
level allocation will return a single page which will be
carved up into appropriate sized pieces and put in the
bucket. This kind of allocation is efficient because a single
request creates several pieces of memory which become

purposes. Submaps isolate a region from the rest of
kernel memory. They have their own management
mechanism that controls access to that range of memory,
thereby allowing related allocations to be kept together
and not be intermixed with other, unrelated allocations. A
submap’s size, measured in pages, is static and does not
change over time; it can therefore be used to impose a
constraint on how much memory a kernel subsystem may
consume.

kmem_map is a submap used exclusively for dynamic
memory allocations. malloc(9) and free(9) are the interface
into this region of memory and, along with lower level
routines, provide the mechanisms for its management.

The more common name for kmem_map is the kernel malloc
arena. It is created as part of the boot process when the
kernel initializes structures needed to manage its memory.
The size of the malloc arena is machine dependent and
takes into account the system’s page size and available
memory. In OpenBSD and NetBSD the default upper
and lower bounds are set in /usr/include/machine/param.h
(NKMEMPAGES_MAX, NKMEMPAGE_MIN). On a running system, the
size can be determined by multiplying the system’s page
size by the number of pages in the malloc arena, e.g.,

prompt#> pagesize

4096

prompt#> sysctl vm.kmempages

vm.nkmempages=32768

The command pagesize(1) returns the hardware pagesize
in bytes. The userland sysctl(1) program queries the
system for the number of pages in the malloc arena
(vm.nkmempages). On this particular system, the size of
the malloc arena is 4096 * 32768 (128 megabytes), which
incidentally is the default upper bound. If the default size
is unacceptable, then it can be set statically by compiling
a custom kernel. See the options(4) manpage, specifically
the variable NKMEMPAGES.

The subsystems which use memory from the malloc
arena are spread throughout all parts of the kernel
– networking, file systems, devices, cryptography, and
kernel management operations, etc. For each subsystem
that calls malloc(9) there is a kmemstats structure
which is used to maintain statistics and set limits on that
particular subsystem’s memory usage. There is a static
upper bound on how much memory a single subsystem
may use at any given time, and a counter which, under
certain conditions, tracks how often this upper bound has
been reached. Other counters track the number of times
a subsystem calls malloc(9) and the current number items
in use.

01/2012 26

ADMIN malloc(9) The Kernel’s General Purpose Memory Allocator

www.bsdmag.org 27

immediately available. Buckets with items equal to or
larger than a page cannot benefit from this optimization.
For these requests, the memory is given directly to
the subsystem which called malloc(9). However, when
this memory is freed, it will be put on the free list in the
appropriate bucket where it will remain until there is
another request. The special case is for buckets with
items larger than twice the page size. Because these
items are so large, they are never put onto the free list
after a call to free(9) but are instead returned to the malloc
arena. Therefore the free lists in these buckets are always
empty.

With the exception of allocations twice the page size, a
page of memory allocated to a bucket remains associated
with that bucket permanently. Counters exist which track
the amount of free memory in a bucket, but no action is
taken to remove unused pages and return them to the
malloc arena.

Each bucket has its own kmembucket structure for
maintaining usage statistics. Bucket statistics displayed
by vmstat are taken exclusively from this structure.

Figure 1 is the partial output of vmsstat -m (on
OpenBSD, these statistics are also available with systat
buckets). The upper table shows memory statistics by
bucket size:

• Size – the size of the bucket items
• In Use – the number of items from this bucket which

are actively in use by a kernel subsystem

• Free – the number of items on the free list
• Requests – total number of requests (since boot) for

an item in this bucket
• HighWater – a high watermark for the number of

items in the bucket
• Couldfree – over high watermark and could free

The Size column shows the ascending power of two
bucket sizes. The total amount of memory allocated to
a given bucket equals Size * (Free + In Use). HighWater
is used for calculating unused memory in a bucket. For
buckets with items less than a page size the value is the
number of items which fit on a single page of memory
multiplied by 5 (e.g., on a system with 4k pages, and a
bucket holding 64 byte pieces, the high watermark is
4096 / 64 * 5 = 320). Buckets with larger items have
a high watermark of 5. Note also that the free lists in
buckets for sizes larger than twice the page size (16k)
are (and always will be) zero.

When malloc(9) was first implemented in 4.3BSD,
consideration was given to how unused memory on
a bucket’s free list could be reclaimed if there were a
memory shortage in the malloc arena. The values under
HighWater and Couldfree were created with this purpose
in mind. Couldfree is incremented after a call to free(9)
which results in 1) there being an unused page in a
bucket, i.e., a page from which no pieces are in use by
a subsystem, and 2) the number of items on the bucket’s
free list is above the high watermark.

The original paper by McKusick/Karels addressed the
problem that free lists could get very large and thereby
reduce available memory for other requests. In practice
however, this didn’t occur, and it was therefore not
considered an immediate problem. (While it has not been
possible to do an exhaustive search of all releases based
on 4.3BSD, the author, having searched through many

Figure 1. Statistics by buckets size (above); type statistics by bucket size Figure 2. Memory statistics by type

01/2012 26

ADMIN malloc(9) The Kernel’s General Purpose Memory Allocator

www.bsdmag.org 27

source files, hasn’t found an implementation that tried to
recover free, unused pages from a bucket.) The value of
Couldfree is never decremented, and no action is taken
based upon its value.

The second table of output shows memory usage type
by bucket size. Size is the list of buckets, and Types(s) are
the various kernel subsystems which have used memory
from the given bucket. More descriptive definitions for the
Type(s) can be found at the top of sys/malloc.h.

Figure 2 is the partial output of vmstat -m which shows
memory statistics by type, i.e., kernel subsystem. (On
OpenBSD, this is also displayed with systat malloc;
values for MemUse, HighUse and Limit are in bytes)

• Type – kernel subsystem
• InUse – the number of bucket items currently in use

by this particular subsystem
• MemUse – the total memory currently used by the

subsystem
• HighUse – the largest amount of memory used by the

subsystem at one time since boot
• Limit – the maximum amount a memory this Type is

allowed to use
• Requests – the total number of successful calls to

malloc(9)
• Type Limit – number of times malloc(9) slept because

MemUse was greater than Limit
• Kern Limit – number of times blocked because there

was no more memory in the malloc arena
• Size(s) – a list of buckets from which the Type

requested memory at least once

Note: Sizes displayed in K are byte values rounded up to
the next kilobyte.

If a particular subsystem is never used, or never calls
malloc(9), then it won’t appear in the output. Limit is set
when initializing the malloc arena. It is the same for all
types and the value is dependent on the size of the malloc
arena. The formula is nkmempages * page size * 6 / 10.

If MemUse is already equal to (or above) Limit when
malloc(9) is called, then the call will either fail and return
NULL, or, if the caller is willing to wait, malloc(9) will
increment Type Limit and go to sleep until the particular
subsystem returns enough memory to bring MemUse
below Limit.

Sizes lists buckets from which a particular subsystem
requested memory. This reflects all allocations since
the subsystem made its first request (the vmstat output
differs from systat’s – systat shows a series of vertical
bars (|) and/or dots (.) representing buckets in ascending
order by size. The presence of the vertical bar indicates

bucket usage, whereas a dot represents a bucket from
which nothing has been allocated; e.g., |.||..||..||.... means
memory was allocated from the first, third and fourth
buckets (16k, 64k, 128k) etc; none was allocated from
second, fifth or sixth buckets, etc.

The ‘Kern Limit’ value originally appeared in 4.3BSD and
was incremented whenever malloc(9) couldn’t add more
memory to a bucket because there was none available
in the kernel malloc arena. Subsequent releases of BSD
from CSRG stopped incrementing this variable. Although
it is still in the kmemstat structure, it isn’t used anywhere
in the NetBSD/OpenBSD code except by programs that
extract variables from kmemstat (e.g., sysctl, vmstat,
systat). It will therefore always be zero.

Conclusion: malloc(9) Then and Now
When malloc(9) was first implemented in 4.3BSD, it was
intended to replace all other existing mechanisms for
dynamically allocating kernel memory. Original design
decisions were based upon known patterns of usage.
In the two decades since the release of 4.3BSD other
methods have been shown to be more effective for certain
types of memory allocation; these include kernel memory
pools dedicated to specific structures and slab allocators.

NetBSD and FreeBSD have extended the functionality
of the malloc(9) interface, adding features found in the
userland version of malloc(3). Also, in FreeBSD, the back
end is implemented using slab allocation; useful statistics
are visible with the -z option to vmstat. Additionaly, the
power of two strategy is used only for allocations less than
or equal to the page size; larger allocations are rounded up
to the next page. The default NetBSD kernel disables the
KMEMSTATS option, meaning the kernel doesn’t collect
statistics on malloc(9)’s usage and therefore doesn’t
enforce the memory usage limit for subsystems. Although
malloc(9) is still used throughout the NetBSD kernel, it is
considered deprecated and newer kernel services should
use newer, alternate methods for obtaining memory.

PAUL MCMATH
Paul McMath has worked as a Unix admin for 10+ years in
Europe and the United States. He has been using one BSD variant
or another as his OS of choice since 2002.

01/2012 28

TIPS&TRICKS malloc(9) The Kernel’s General Purpose Memory Allocator

www.bsdmag.org 29

After I started using FreeBSD at 5.4 times (2005)
I have tried various methods of keeping my
FreeBSD installations up-to-date, many of them

terribly failed, but some recent ones seem to do the job
as advertised. Even not so recently ago I thought, lets
stick to RELEASE and do not compile newer versions
of packages as there are available packages at FTP ...
but there is a big problem with such attitude. First, once
the RELEASE is completed, there are only security fixes
for the base system, but there are no bug fixes for the
RELEASE. Its even worse with packages for RELEASE
since once they are built they are never later updated,
even if they have security issues, not even mentioning
bugs. So that is definitely not the right way.

The sollution seems to be tracking STABLE tree for the
base system along with packages that are built every 2
weeks for the STABLE tree and compiling only when there
are security issues in some of the installed packages, but
there are for example 10 more days before their rebuilt
versions would show up on the STABLE tree FTP. Below I
would try to describe all that process of keeping FreeBSD
up-to-date as simple as possible. In the first part I would
focus on the base system and the second one will cover
keeping packages up-to-date.

Some important information about keeping Your system
this way. You would not rebuild the base system every

day, not even every week, just when needed. Now what
does it mean ‘when needed’ ... For example when there
is a security issue, You would just follow the instructions
in the SA (security advisory) to fix that issue, there is no
need to rebuild whole world. The only reasons to rebuild
the base system are that there has been found and fixed
a bug in STABLE that affects You or that You need new
features that has been merged into the STABLE branch
(from CURRENT for example) like newer ZFS version or
whatever.

As for the installation, You can install the RELEASE
version and update to STABLE or install the daily STABLE
snapshot so You would not have to build entire base
system from source, the daily ISO images are available at
http://pub.allbsd.org/FreeBSD-snapshots/ server.

PART I
Keeping the FreeBSD Base System Up-To-Date
Some Facts About FreeBSD’s Base System

• once RELEASE is completed, there are only security
fixes, there are no bug fixes

• bugs in STABLE tree are fixed
• security issues are also fixed in STABLE
• the RELEASE branch allows to use binary updates

via freebsd-update tool for security fixes

Keeping Base System

Today, I would like to ‘touch’ an ungrateful topic of keeping
both FreeBSD’s base system and installed packages up-to-
date.
What you will learn…
• Knowledge about upgrading/updating FreeBSD’s base system

(check http://freebsd.org/handbook/updating-upgrading.html
chapter from FreeBSD Handbook)

• Knowledge about adding/removing packages (check man pkg_
info/man pkg_add/man pkg_delete).

• Knowledge about Ports concept and its general usage (check
http://freebsd.org/handbook/ports.html chapter from FreeBSD
Handbook)

What you should know…
• Knowledge about keeping both FreeBSD’s base system and

package up-to-date.

& Packages Up-To-Date

http://pub.allbsd.org/FreeBSD-snapshots/
http://freebsd.org/handbook/updating-upgrading.html
http://freebsd.org/handbook/ports.html

01/2012 28

TIPS&TRICKS malloc(9) The Kernel’s General Purpose Memory Allocator

www.bsdmag.org 29

that purpose. Its generally a lot faster/easier to setup then
csup but the ‘csup way’ has one important advantage, its
in the FreeBSD’s base system, so its always available,
anywhere. With SVN, You will have to add a package
first which sometimes may be cumbersome. But as the
FreeBSD source tree is kept under SVN it is possible that
SVN will be part of the FreeBSD’s base system one day.

It’s also important to mention, that sources downloaded
by SVN are not compatible with the sources grabbed by
csup, so once You will decide which method to use, stick
with it, unless You want to download the whole FreeBSD’s
source tree again. Below (Listing 4) we have SVN update
to 9-STABLE latest state.

It’s the same no matter if You download the whole tree
or just doing an update from yesterday. If svn will complain
about anything, just delete the /usr/src and type the
command again.

• the STABLE branch requires compiling of the
FreeBSD base system

We need to clone the current cource tree if we want
to build up to date STABLE branch FreeBSD’s base
system, we will also need to update our sources to the
current state so its quite handy to find fastest server for
Your location, it can be easily done by using sysutils/
fastest _ cvsup package as showed in Listing 1.

For my location it is cvsup.pl.freebsd.org which in most
cases will be different ther for Your location, so remember
to put Your’s fastest in the next steps.

Create simple supfile that will be used by csup(1) to
keep FreeBSD’s base system sources up-to-date (Listing
2). There are useful examples under /usr/share/examples/
cvsup/ if you want to dig more.

Now lets get/update our sources to the current state
(Listing 3), the list of edited/checked files will be quite
different on Your box since I already have quite up-to-date
sources, this will take more time if You do not have the
sources on the disk.

Alternatively, You can grab the sources by SVN
protocol, but You will need devel/subversion16 package for

Listing 1. Searching for the fastest csup(1) server with fastest_
cvsup(7) package

pkg_add -r fastest_cvsup

rehash

fastest_cvsup -c all

(...)

>> Speed Daemons:

 - 1st: cvsup.pl.freebsd.org

 - 2nd: cvsup11.ua.freebsd.org

 - 3rd: cvsup5.de.freebsd.org

Listing 2 Creating csup(1) con�g �le that will update sources to
9-STABLE

cat > /root/stable-supfile << EOF

*default host=cvsup.pl.freebsd.org

*default base=/var/db

*default prefix=/usr

*default release=cvs tag=RELENG_9

*default delete use-rel-suffix

*default compress

src-all

EOF

Listing 3. Updating FreeBSD source tree using csup(1) from the
base system

csup /root/stable-supfile

Connected to 188.125.237.138

Updating collection src-all/cvs

 Edit src/bin/ed/buf.c

 Edit src/sbin/fsck_ffs/main.c

 Edit src/sbin/mdconfig/mdconfig.8

 Edit src/sbin/mdconfig/mdconfig.c

 Edit src/share/man/man4/ath.4

 Edit src/share/man/man4/ath_hal.4

 Edit src/sys/cddl/contrib/opensolaris/uts/common/fs/

zfs/zfs_vnops.c

 Edit src/sys/cddl/contrib/opensolaris/uts/common/fs/

zfs/zfs_znode.c

 Edit src/sys/dev/ahci/ahci.c

 Edit src/sys/fs/msdosfs/msdosfs_vnops.c

 Edit src/sys/fs/nfsclient/nfs_clbio.c

 Edit src/sys/fs/nfsserver/nfs_nfsdserv.c

 Edit src/sys/fs/nwfs/nwfs_io.c

 Edit src/sys/fs/smbfs/smbfs_io.c

 Edit src/sys/fs/tmpfs/tmpfs_vnops.c

 Edit src/sys/gnu/fs/xfs/FreeBSD/xfs_vnops.c

 Edit src/sys/kern/uipc_usrreq.c

 Edit src/sys/kern/vfs_vnops.c

 Edit src/sys/nfsclient/nfs_bio.c

 Edit src/sys/sparc64/sbus/sbus.c

 Edit src/sys/sys/vnode.h

 Edit src/sys/ufs/ffs/ffs_inode.c

 Edit src/sys/ufs/ffs/ffs_vnops.c

http://cvsup.pl.freebsd.org

01/2012 30

TIPS&TRICKS malloc(9) The Kernel’s General Purpose Memory Allocator

www.bsdmag.org 31

Now as we have the sources we can continue to building
the FreeBSD’s base system from source (Listing 5). As for
editing the kernel config, You do not even have to bother
about it, just use GENERIC, this guide is not about stripping
the base system and kernel components, its about
keeping everything up-to-date. Of course if You want to,
then use Your tweaked kernel config, it will not interfere
with the rest of this guide. You may want to put nice -

n 20 in front of make buildworld ... line to make that build
process less amusing for your system. As instructions are
completed, Your system will reboot.

We are now proceeding to the second phase of the
upgrade process (Listing 6). After normal boot (single-
user mode not required and definitely prohibited while
doing upgrade over the network) stop all unneeded
services (remember to keep sshd daemon alive if you
are doing upgrade via network). If your system booted up
properly, then You can make the new testing kernel the
default one, at least there should not be any problems
with the GENERIC kernel config.

The list of started processes (Listing 7) will look
something like that including (or not) sshd(8) for keeping
up the network connection.

Now we can continue to type rest of needed instructions
(Listing 8) to finish the update, the mergemaster(8) will ask
You for the differences in startup scripts that You have
modified and configuration files, type I to install the
new/default config and/or script and select D to leave the
version that you have in the system, remember that You
can also add these changes later, it may be not appreciate
to install default firewall config or customized OpenSSH
config while doing the network upgrade.

After that second reboot You should have updates to
STABLE branch FreeBSD’s base system, I wrote ‘should’
because sometimes things do not go the way we want them
to go, especially if you are doing it the first time as once
Aerosmith sing I know it’s everybody’s sin, You got to lose
to know how to win. It would be best to do these instructions

Listing 4. Updating FreeBSD source tree using svn(1) from the
devel/subversion16 package

svn checkout svn://svn.freebsd.org/base/stable/9

/usr/src

U /usr/src/usr.bin/grep/util.c

 U /usr/src/usr.bin/grep

U /usr/src/share/man/man5/rc.conf.5

 U /usr/src/share/man/man5

U /usr/src/share/man/man9/driver.9

 U /usr/src/share/man/man9

U /usr/src/usr.sbin/mergemaster/mergemaster.sh

 U /usr/src/usr.sbin/mergemaster

 U /usr/src/lib/libc/stdtime

 U /usr/src/lib/libc

U /usr/src/lib/librt/timer.c

 U /usr/src/lib/librt

U /usr/src/lib/libpam/modules/pam_ssh/pam_ssh.c

 U /usr/src/lib/libpam

U /usr/src/etc/network.subr

U /usr/src/etc/devd.conf

 U /usr/src/etc

U /usr/src/sys/sparc64/pci/schizo.c

U /usr/src/sys/kern/kern_ctf.c

U /usr/src/sys/kern/vfs_syscalls.c

U /usr/src/sys/kern/sys_generic.c

U /usr/src/sys/netinet/tcp_reass.c

U /usr/src/sys/netinet6/nd6.c

U /usr/src/sys/contrib/pf/net/pf.c

 U /usr/src/sys/contrib/pf

U /usr/src/sys/amd64/include/segments.h

 U /usr/src/sys/amd64/include/xen

U /usr/src/sys/amd64/include/trap.h

U /usr/src/sys/amd64/amd64/trap.c

U /usr/src/sys/sys/bus.h

 U /usr/src/sys

Checked out revision 228452.

Listing 5. Building FreeBSD's base system

cd /usr/src

rm -r -f /usr/obj

make buildworld kernel KODIR=/boot/testing

nextboot -k testing

shutdown -r now

Listing 6. Making new kernel permanent and stopping unneded
services

cd /boot

rm -r -f OLD

mv kernel OLD

mv testing kernel

/etc/rc.d/cron stop

/etc/rc.d/devd stop

/etc/rc.d/sshd stop

/etc/rc.d/powerd stop

/etc/rc.d/syslogd stop

01/2012 30

TIPS&TRICKS malloc(9) The Kernel’s General Purpose Memory Allocator

www.bsdmag.org 31

as exercise under virtual machine like VirtualBox or QEMU.
Also, if you do not feel that STABLE is production enought,
then You may want to use STABLE packages along
with RELEASE base system, You will need to define
environment variable PACKAGESITE that will point to http://
ftp.freebsd.org/pub/FreeBSD/ports/amd64/packages-9-
stable/Latest/ at least for FreeBSD 9.x system.

PART II
Keeping the FreeBSD Packages Up-To-Date
Keeping packages up to date is little more tricky, we
will also need the STABLE branch for them as these
in RELEASE are not updated. Lets assume that You
installed the FreeBSD STABLE snapshot a month ago,
along with packages that were built by then, now there

Listing 7. Cut to minimum list of running processes during the upgrade process

top -b

last pid: 64835; load averages: 0.00, 0.00, 0.00 up 0+03:11:51 10:24:37

119 processes: 2 running, 117 sleeping

Mem: 960M Active, 355M Inact, 4014M Wired, 6096K Cache, 8368K Buf, 2527M Free

Swap:

 PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND

 2178 root 1 54 0 10304K 2748K ppwait 0 0:00 0.00% csh

 2174 root 1 45 0 21696K 1992K wait 0 0:00 0.00% login

 2177 root 1 76 0 6912K 1284K ttyin 0 0:00 0.00% getty

 2176 root 1 76 0 6912K 1284K ttyin 1 0:00 0.00% getty

 2175 root 1 76 0 6912K 1284K ttyin 0 0:00 0.00% getty

 114 root 1 76 0 2764K 1056K pause 0 0:00 0.00% adjkerntz

Listing 8. Installing the newly built base system

cd /usr/src

mergemaster -p

make installworld

mergemaster -iU

make delete-old

shutdown -r now

Listing 9. The ports-check function

function ports-check {

 # FETCH LATEST PORTS TREE

 sudo portsnap fetch update

 # CHECK WHAT NEW VERSIONS EXIST

 sudo portmaster -L --index-only | awk '/ [Nn]ew / {print substr($0,9,9999)}'

 # CHECK SECURITY ISSUES

 sudo portaudit -Fda

 # CHECK /usr/ports/UPDATING MESSAGES

 pkg_updating -d $(ls -ltr -D '%Y%m%d' /var/db/pkg | awk 'END{print $6}')

}

http://ftp.freebsd.org/pub/FreeBSD/ports/amd64/packages-9-stable/Latest/
http://ftp.freebsd.org/pub/FreeBSD/ports/amd64/packages-9-stable/Latest/
http://ftp.freebsd.org/pub/FreeBSD/ports/amd64/packages-9-stable/Latest/

01/2012 32

TIPS&TRICKS malloc(9) The Kernel’s General Purpose Memory Allocator

www.bsdmag.org 33

Listing 10. The ports-update function

function ports-update {

 case ${#} in

 (0) sudo pkg_upgrade -C -a 2>&1 | grep --color=none --line-buffered -E "^(=+>|/usr/ports|/var/db)" ;;

 (*) sudo pkg_upgrade -C $@ 2>&1 | grep --color=none --line-buffered -E "^(=+>|/usr/ports|/var/db)" ;;

 esac

 # FIX DEPENDENCIES AS NEEDED

 sudo portmaster --check-depends

}

Listing 11. The ports-build function

function ports-build {

 # REBUILD SINGLE, SEVERAL OR ALL PORTS

 case ${#} in

 (0) sudo portmaster -y --no-confirm -m 'BATCH=yes'

-d -a ;;

 (*) sudo portmaster -y --no-confirm -m 'BATCH=yes'

-d $@ ;;

 esac

 # FIX DEPENDENCIES AS NEEDED

 sudo portmaster --check-depends

}

Example 1. Typical output about new/updated ports and new
versions available

[code]% ports-check

Looking up portsnap.FreeBSD.org mirrors... 5 mirrors found.

Fetching snapshot tag from portsnap5.freebsd.org... done.

Fetching snapshot metadata... done.

Updating from Mon Sep 5 07:11:28 CEST 2011 to Mon Sep

5 08:51:01 CEST 2011.

Fetching 3 metadata patches.. done.

Applying metadata patches... done.

Fetching 0 metadata files... done.

Fetching 10 patches.....10 done.

Applying patches... done.

Fetching 1 new ports or files... done.

Removing old files and directories... done.

Extracting new files:

/usr/ports/chinese/c2t/

/usr/ports/chinese/hc/

/usr/ports/devel/Makefile

/usr/ports/devel/p5-System-Command/

/usr/ports/german/mythes/

/usr/ports/math/p5-Statistics-R/

/usr/ports/polish/hunspell/

/usr/ports/textproc/es-mythes/

/usr/ports/textproc/nl-mythes/

/usr/ports/textproc/sk-mythes/

/usr/ports/textproc/sl-mythes/

Building new INDEX files... done.

New version available: ca_root_nss-3.12.11_1

New version available: expat-2.0.1_2

New version available: tinyxml-2.6.2

New version available: bash-4.1.11

New version available: gstreamer-plugins-0.10.35_1,3

New version available: gtk-2.24.6

New version available: gtk-update-icon-cache-2.24.6

New version available: libsamplerate-0.1.8_1

New version available: nas-1.9.3

New version available: nettle-2.4

New version available: p5-Date-Manip-6.25

New version available: p5-Mail-IMAPClient-3.29

New version available: p5-XML-Parser-2.41

New version available: xterm-273

New version available: filezilla-3.5.1

New version available: firefox-6.0.1,1

New version available: gtk-oxygen-engine-1.1.2

New version available: nginx-1.0.6,1

New version available: qemu-0.11.1_10

20 have new versions available

New database installed.

Database created: Thu Sep 1 21:20:00 CEST 2011

0 problem(s) in your installed packages found.

01/2012 32

TIPS&TRICKS malloc(9) The Kernel’s General Purpose Memory Allocator

www.bsdmag.org 33

Example 2. A report that also shows some security issues

% ports-check

Looking up portsnap.FreeBSD.org mirrors... 5 mirrors

found.

Fetching snapshot tag from portsnap1.freebsd.org... done.

Fetching snapshot metadata... done.

Updating from Mon Sep 5 10:28:51 CEST 2011 to Mon Sep 5

12:07:23 CEST 2011.

Fetching 3 metadata patches.. done.

Applying metadata patches... done.

Fetching 0 metadata files... done.

Fetching 20 patches.....10....20 done.

Applying patches... done.

Fetching 1 new ports or files... done.

Removing old files and directories... done.

Extracting new files:

/usr/ports/MOVED

/usr/ports/Mk/bsd.sites.mk

/usr/ports/cad/Makefile

/usr/ports/devel/Makefile

/usr/ports/devel/p5-Bread-Board-Declare/

/usr/ports/devel/p5-Curses-UI/

/usr/ports/devel/p5-Data-Peek/

/usr/ports/devel/p5-Scope-Upper/

/usr/ports/dns/pear-Net_DNS2/

/usr/ports/lang/p5-Try-Tiny/

/usr/ports/mail/p5-Email-Valid/

/usr/ports/math/p5-Math-BigInt/

/usr/ports/net/pear-Net_SMTP/

/usr/ports/ports-mgmt/portaudit-db/

/usr/ports/sysutils/py-supervisor/

/usr/ports/sysutils/zfsnap/

/usr/ports/www/nginx-devel/

/usr/ports/www/nginx/

/usr/ports/www/rubygem-passenger/

/usr/ports/x11/Makefile

Building new INDEX files... done.

New version available: arc-5.21p

New version available: ca_root_nss-3.12.11_1

New version available: expat-2.0.1_2

New version available: tinyxml-2.6.2

New version available: bash-4.1.11

New version available: gstreamer-plugins-0.10.35_1,3

New version available: gtk-2.24.6

New version available: gtk-update-icon-cache-2.24.6

New version available: libsamplerate-0.1.8_1

New version available: nas-1.9.3

New version available: nettle-2.4

New version available: p5-Date-Manip-6.25

New version available: p5-Mail-IMAPClient-3.29

New version available: p5-XML-Parser-2.41

New version available: xterm-273

New version available: filezilla-3.5.1

New version available: firefox-6.0.1,1

New version available: gtk-oxygen-engine-1.1.2

New version available: nginx-1.0.6,1

New version available: qemu-0.11.1_10

20 have new versions available

auditfile.tbz 100% of

69 kB 54 kBps

New database installed.

Database created: Mon Sep 5 12:35:01 CEST 2011

Affected package: ca_root_nss-3.12.9

Type of problem: ca_root_nss -- Extraction of unsafe

certificates into trust bundle..

Reference: http://portaudit.FreeBSD.org/1b27af46-d6f6-

11e0-89a6-080027ef73ec.html

Affected package: ca_root_nss-3.12.9

Type of problem: nss/ca_root_nss -- Fraudulent

Certificates issued by DigiNotar.nl.

Reference: http://portaudit.FreeBSD.org/aa5bc971-d635-

11e0-b3cf-080027ef73ec.html

2 problem(s) in your installed packages found.

You are advised to update or deinstall the affected

package(s) immediately.

01/2012 34

TIPS&TRICKS malloc(9) The Kernel’s General Purpose Memory Allocator

www.bsdmag.org 35

will be quite a lot of new versions for many packages
which is not that important, but some of them can (and
probably have) security issues and definitely should be
updated. You can of course compile them from Ports
using portmaster(8) but why waste time for compiling,
when You can use built every 2 weeks packages from
the STABLE branch? The pkg_upgrade(1) script from the
sysutils/bsdadminscripts package will be quite helpful here.
It will fetch latest available packages from the STABLE
FTP and there is a chance that the security issues will
be solved by the newer versions, if not, we are forced to
rebuild those packages from source using portmaster(8),
but its a lot better and faster to recompile 1-2 packages
instead of 30 or more.

As for updating the packages, I generally check them
daily, mostly for security issues that would be reported
with portaudit(1) (from ports-mgmt/portaudit package),
there are often new versions reported, sometimes even

quite lot, but as long as there are 0 problem(s) in your

installed packages found. I do not bother. From time to time
I fire up pkg_upgrade -a -C to fetch the latest packages from
the STABLE branch FTP.

Some of You would certainly ask why use pkg_upgrade(1)
instead of updating with portmaster(8)? Well, for example You
have package z-1.0 installed in Your system, latest package
available on the FTP is z-1.1z-1.2, so portmaster(8) will omit
that z-1.1 package no matter if its newer or not and will force
You to compile the z-1.2 package from the Ports system.

Keeping FreeBSD packages up-to-date in short

• use packages from STABLE that are built every 2
weeks

• use pkg _ upgrade(1) to update packages
• use portmaster(8) to rebuild packages that have

security issues

Example 3. Solving the security issues by rebuilding the problematic package

% ports-build ca_root_nss

===>>> Currently installed version: ca_root_nss-3.12.9

===>>> Port directory: /usr/ports/security/ca_root_nss

(...)

===>>> Updating dependency entry for ca_root_nss-

3.12.11_1 in each dependent port

===>>> Upgrade of ca_root_nss-3.12.9 to ca_root_nss-

3.12.11_1 complete

% ports-check

Looking up portsnap.FreeBSD.org mirrors... 5 mirrors

found.

Fetching snapshot tag from portsnap2.freebsd.org... done.

Fetching snapshot metadata... done.

Updating from Mon Sep 5 12:07:23 CEST 2011 to Mon Sep 5

12:25:09 CEST 2011.

Fetching 3 metadata patches.. done.

Applying metadata patches... done.

Fetching 0 metadata files... done.

Fetching 2 patches.. done.

Applying patches... done.

Fetching 0 new ports or files... done.

Removing old files and directories... done.

Extracting new files:

/usr/ports/devel/p5-File-NFSLock/

/usr/ports/devel/p5-MooseX-Aliases/

Building new INDEX files... done.

New version available: arc-5.21p

New version available: expat-2.0.1_2

New version available: tinyxml-2.6.2

New version available: bash-4.1.11

New version available: gstreamer-plugins-0.10.35_1,3

New version available: gtk-2.24.6

New version available: gtk-update-icon-cache-2.24.6

New version available: libsamplerate-0.1.8_1

New version available: nas-1.9.3

New version available: nettle-2.4

New version available: p5-Date-Manip-6.25

New version available: p5-Mail-IMAPClient-3.29

New version available: p5-XML-Parser-2.41

New version available: xterm-273

New version available: filezilla-3.5.1

New version available: firefox-6.0.1,1

New version available: gtk-oxygen-engine-1.1.2

New version available: nginx-1.0.6,1

New version available: qemu-0.11.1_10

19 have new versions available

auditfile.tbz 100% of

69 kB 54 kBps

New database installed.

Database created: Mon Sep 5 12:40:01 CEST 2011

0 problem(s) in your installed packages found.

01/2012 34

TIPS&TRICKS malloc(9) The Kernel’s General Purpose Memory Allocator

www.bsdmag.org 35

Example 4. Updating the installed packages using STABLE branch

% ports-update

/var/db/uma/FTPINDEX 100% of

21 MB 1139 kBps 00m00s

/usr/ports/packages/All/nettle-2.4.tbz 100% of

1082 kB 332 kBps

/usr/ports/packages/All/gstreamer-plugins-0.10100% of

4091 kB 942 kBps

/usr/ports/packages/All/gtk-oxygen-engine-1.1.100% of

509 kB 339 kBps

/usr/ports/packages/All/filezilla-3.5.1.tbz 100% of

3301 kB 232 kBps 00m00s

/usr/ports/packages/All/nas-1.9.3.tbz 100% of

487 kB 494 kBps

/usr/ports/packages/All/expat-2.0.1_2.tbz 100% of

130 kB 129 kBps

/usr/ports/packages/All/xterm-273.tbz 100% of

262 kB 104 kBps

/usr/ports/packages/All/p5-XML-Parser-2.41.tbz100% of

184 kB 381 kBps

/usr/ports/packages/All/nginx-1.0.6,1.tbz 100% of

225 kB 206 kBps

/usr/ports/packages/All/qemu-0.11.1_10.tbz 100% of

12 MB 359 kBps 00m00s

/usr/ports/packages/All/tinyxml-2.6.2.tbz 100% of

170 kB 121 kBps

/usr/ports/packages/All/p5-Date-Manip-6.25.tbz100% of

1301 kB 681 kBps

===> Update <tinyxml-2.6.1_1> to <tinyxml-2.6.2>

(textproc/tinyxml)

=> Update <tinyxml-2.6.1_1> to <tinyxml-2.6.2>

(textproc/tinyxml) succeeded

===> Update <p5-Mail-IMAPClient-3.28> to <p5-Mail-IMAPClient-

3.29> (mail/p5-Mail-IMAPClient)

=> Update <p5-Mail-IMAPClient-3.28> to <p5-Mail-IMAPClient-

3.29> (mail/p5-Mail-IMAPClient) succeeded

===> Update <p5-Date-Manip-6.24> to <p5-Date-Manip-6.25>

(devel/p5-Date-Manip)

=> Update <p5-Date-Manip-6.24> to <p5-Date-Manip-6.25>

(devel/p5-Date-Manip) succeeded

===> Update <nginx-1.0.5,1> to <nginx-1.0.6,1> (www/nginx)

=> Update <nginx-1.0.5,1> to <nginx-1.0.6,1> (www/nginx)

succeeded

===> Update <nettle-2.2> to <nettle-2.4> (security/nettle)

=> Update <nas-1.9.2> to <nas-1.9.3> (audio/nas) succeeded

===> Update <libsamplerate-0.1.7_1> to <libsamplerate-

0.1.8_1> (audio/libsamplerate)

=> Update <libsamplerate-0.1.7_1> to <libsamplerate-0.1.8_

1> (audio/libsamplerate) succeeded

===> Update <expat-2.0.1_1> to <expat-2.0.1_2> (textproc/expat2)

=> Update <expat-2.0.1_1> to <expat-2.0.1_2> (textproc/

expat2) succeeded

===> Update <xterm-271> to <xterm-273> (x11/xterm)

=> Update <xterm-271> to <xterm-273> (x11/xterm) succeeded

===> Update <qemu-0.11.1_9> to <qemu-0.11.1_10> (emulators/qemu)

=> Update <qemu-0.11.1_9> to <qemu-0.11.1_10>

(emulators/qemu) succeeded

===> Update <p5-XML-Parser-2.40> to <p5-XML-Parser-2.41>

(textproc/p5-XML-Parser)

=> Update <p5-XML-Parser-2.40> to <p5-XML-Parser-2.41>

(textproc/p5-XML-Parser) succeeded

===> Update <gtk-update-icon-cache-2.24.5> to <gtk-

update-icon-cache-2.24.6> (graphics/

gtk-update-icon-cache)

=> Update <gtk-update-icon-cache-2.24.5> to <gtk-update-

icon-cache-2.24.6> (graphics/gtk-

update-icon-cache) succeeded

===> Update <gtk-2.24.5_1> to <gtk-2.24.6> (x11-toolkits/gtk20)

=> Update <gtk-2.24.5_1> to <gtk-2.24.6> (x11-toolkits/

gtk20) succeeded

===> Update <gtk-oxygen-engine-1.1.1> to <gtk-oxygen-engine-

1.1.2> (x11-themes/gtk-oxygen-engine)

=> Update <gtk-oxygen-engine-1.1.1> to <gtk-oxygen-engine-1.1.2>

 (x11-themes/gtk-oxygen-engine) succeeded

===> Update <gstreamer-plugins-0.10.35,3> to <gstreamer-

plugins-0.10.35_1,3> (multimedia/

gstreamer-plugins)

=> Update <gstreamer-plugins-0.10.35,3> to <gstreamer-

plugins-0.10.35_1,3> (multimedia/

gstreamer-plugins) succeeded

===> Update <firefox-6.0_1,1> to <firefox-6.0.1,1> (www/firefox)

=> Update <firefox-6.0_1,1> to <firefox-6.0.1,1> (www/

firefox) succeeded

===> Update <filezilla-3.5.0_1> to <filezilla-3.5.1> (ftp/

filezilla)

===> Update <bash-4.1.10> to <bash-4.1.11> (shells/bash)

=> Update <bash-4.1.10> to <bash-4.1.11> (shells/bash) succeeded

===> Update <arc-5.21o_1> to <arc-5.21p> (archivers/arc)

=> Update <arc-5.21o_1> to <arc-5.21p> (archivers/arc) succeeded

===>>> Checking 2bsd-vi-050325_1

===>>> Checking ImageMagick-6.7.1.10

===>>> Checking ORBit2-2.14.19

===>>> Checking OpenEXR-1.6.1_3

===>>> Checking Thunar-1.2.2_2

(...)

01/2012 36

TIPS&TRICKS

Some facts about being up-to-date with FreeBSD’s
packages

• with every RELEASE, packages are built and then
they are never updated (even if they have security
issues)

• for the STABLE tree packages are rebuilt every 2
weeks

First, we need to install tools that we will use to keep
FreeBSD packages up-to-date.

pkg_add -r bsdadminscripts portmaster portaudit

Optionally, we can allow users in group wheel to perform
these task using sudo(8)sysutils/sudo package with pkg _

add -r sudo command first) as they are already allowed
to login on the root account, we can of course create
separate group like maintainers that will be allowed to
perform upgrades. You will need this line below in /usr/
local/etc/sudoers file.

%wheel ALL=NOPASSWD: /usr/sbin/portsnap, /usr/local/sbin/

pkg_upgrade, /usr/local/sbin/portmaster, /usr/local/sbin/

portaudit

Here is the most important part, the commands put
together into functions that will allow us easy checking
for newer versions of the packages, security issues and
updating them to newer/fixed versions. The ports-check
function fetches latest Ports tree, then shows what new
packages are available comparing to those installed
on the system, next the security issues are checked

with portaudit(8) and last, the /usr/ports/UPDATING file is
checked for various messages that can affect us. The
ports-check (Listing 9) does not rebuild or update any
packages, as the name says, only checks.

The second function, ports-update is for updating the
packages (Listing 10) using the STABLE branch, it uses
pkg_upgrade(1) from sysutils/bsdadminscripts package, but it
will not compile from Ports. You can use it in two ways,
without arguments it will update all packages that will be
found on the STABLE FTP, but as showed in Example 5
it can be also used only to rebuild several packages that
You need to update. It is also possible to specify several
packages to be updated, not only one, like that ports-
update openbox nautilus xterm for example.

The last one (Listing 11) named ports-build rebuilds
the specified package or all of them if You do not specify
one, used mostly to rebuild packages with security issues.
This one also can be used without arguments to rebuild
all Ports packages or with argument(s) to rebuild only
packages that You need to rebuild.

... and thats it generally, I would show some example of
these functions usage below.

You will have to put these functions into Your shells
startup files, it will be /etc/profile for sh(1) shell and
also for bash(1), /etc/zshrc for zsh(1) shell. It will not
work for C-shells like csh(1) since they do not support
functions and are retarded in many other ways: http://
www.grymoire.com/Unix/CshTop10.txt.

Drawbacks
Using this way of keeping the installed packages up-to-
date You have to remember two things.

Customized packages. If You built some package with
non-default options by compiling it, after upgrade it will
revert do the default options and You will have to build it
again.

Kernel modules. Any package that comes with kernel
modules can and probably will break at some point because
the STABLE source tree is a moving target, that is one of the
good reasons to update the base system and then update to
latest packages. The packages that have kernel modules are
for example emulators/virtualbox-ose (VirtualBox), sysutils/
fusefs-kmod (FUSE implementation) and most notably x11/
nvidia-driver (binary nVidia graphics driver).

That’s all folks! ;)

Example 5. Updating only a single package

% ports-update openbox

===> Update <openbox-3.5.0> to <openbox-3.5.0> (x11-

wm/openbox)

=> Update <openbox-3.5.0> to <openbox-3.5.0> (x11-wm/

openbox) succeeded

(...)

===>>> Checking nss-3.12.11

===>>> Checking open-motif-2.3.3

===>>> Checking openbox-3.5.0

 ===>>> No installed ports depend on openbox-3.5.0

 ===>>> Emptying +REQUIRED_BY file. Try portmaster -s

SLAWOMIR WOJTCZAK
Slawomir Wojtczak (vermaden) is just another busy sysadmin
with interest towards UNIX and BSD systems (mostly FreeBSD),
often forced to also work on Linux. KISS principle follower. Active
troll at many BSD, UNIX and Linux forums.

http://www.grymoire.com/Unix/CshTop10.txt
http://www.grymoire.com/Unix/CshTop10.txt

http://www.redsphereglobal.com

01/2012 38

SECURITY Anatomy of a FreeBSD Compromise (Part 2)

www.bsdmag.org 39

As mentioned in the previous article, we highlighted
some of the reasons why servers and systems
are inherently insecure and why it is impossible to

100% secure any system. In this article, we will examine
some of the common techniques used to gain control and
what we can do to mitigate the risks.

Attack Vectors
What is an attack vector? Simply put, an attack vector is
the method by which the hacker gains access to resources
or the data stored on the server, PC or traveling across the
network. The standard IT definition generally implies attacks
which are based on leveraging technology e.g. Cross Site
Scripting attacks (XSS), malware, phishing etc. but for the
the security conscious, this is only part of the story. While
it fairly cut and dried that you have been the victim of an
attack if you discover malware on your PC, the standard
definition doesn’t take into account all the circumstances.
For instance, if an attacker gained physical access to your
PC when the screen was unlocked and copied a sensitive
document onto a USB stick leaving the original intact, you
would still have suffered an attack. For this reason, the
author would prefer to use a much broader definition that
includes physical access, social engineering and identity
theft rather than the classic technical definition as this helps
us think like the opposition rather than confining our world
view to bits and bytes.

As you look into the world of IT security, you will discover
that many of incidents can be categorized into Why didn’t
I see this earlier? group. This is one of the reasons why
we should always have respect for the intruder – albeit
a grudging one. Often the method of access is just a
question of thinking outside the box, sleight of hand or just
plain simply leveraging the limitations of the machine that
will only do exactly as it is told without ethical or valued
consideration. As a Programmer, Systems Administrator
etc. it is your responsibility to add the moral dimension
– Computers do not have a conscience!

Some Hacking Scenarios
To illustrate then main principles, consider the following
hypothetical attacks. In the hands of an experienced
hacker or security expert, and provided they have
sufficient resources, your data would be compromised in
all these scenarios. Can you work out how? While some
attacks are more far-fetched than others, all are potentially
feasible and I hope this will help you the reader to think
outside the box. Answers are at the end of the article.

Attack 1
The PC on your desk is not connected to a network and
you work in a standard office with windows on the 10th
floor. You decide that to aid productivity and security that
you will install voice recognition software that not only

Anatomy

Continuing in our security series, we will look at the ways
that “the bad guys” can gain access and what we can do to
mitigate this risk.

What you will learn…
• How to plan a security strategy

What you should know…
• BSD administration skills

of a FreeBSD Compromise (Part 2)

01/2012 38

SECURITY Anatomy of a FreeBSD Compromise (Part 2)

www.bsdmag.org 39

are in the authors opinion a easy point of access to the
infrastructure. With metal / PVC trunking the cabling could
be secured by adding security screws to the trunking
cover easily, and as any switches etc. would be in locked
cabinets, it was just a question of visually ensuring that no
extra devices were plugged into the network. Most of these
floor boxes are not secured properly to allow the buildings
maintenance department easy access, and even if they
were secured, the actual floor panels themselves are not.
In many data-centers due lack of room or convenience
the author has seen switches or devices located under
the false floor, and this principle could be extended
easily by the unscrupulous into the office space. While
getting access to main power is not recommended using
a vampire tap (Fried hacker anyone?) splicing a tap into
a CAT5 cable takes about 15 minutes with a box cutter,
an IDC punch-down tool, some connectors and a pair
of wire cutters. If the intruder was sufficiently clever, by
using a passive tap his data capturing device would not
be visible on the network. With the battery life of mobile
devices, many hours worth of data could be captured
without raising suspicion. Probably the biggest challenge
is getting the carpet tiles to lie flat of the floor afterwards
without showing tell-tale movement.

The next problem is the CDROM / USB devices and
key-loggers. Once the attacker has physical access to the
device, many possibilities exist for capturing un-encrypted
data. While users should be encouraged to store data on
a network drive, quite often sensitive information is stored
locally on PC’s hard drives and this is easily accessed
across multiple file-system types using a utility such as
Trinity if the partitions or drives are not encrypted. The local
administrator password for the most popular O/S can be
easily reset using such a utility which can be booted from
CD or a USB stick. The benefit of using the USB method
is that data can easily be copied across from the partition
to the stick, and provided no damage is done to the data
on the local drive the theft is virtually undetectable unless
the culprit is physically caught in the act or on CCTV etc.
This could potentially be used to gather data pertaining to
identity theft even if the user data is stored on the network,
as browsers can save login passwords to Internet sites etc.
Depending on the ingenuity of the browser developers, it
may be possible to tie this data to the CPU ID (If the PC
is Intel based) and thereby circumventing this attack, but
to the authors knowledge no such mechanism exists.
The other common form of attack is the key-logger, which
records all keystrokes generated by the end user. With the
growth if the Internet, software key loggers seem to be in
abundance, but physical devices are easily obtainable as
well. The level of threat here is obvious, all input to the PC

allows you to write documents quickly, but also allows you
to login. All your data is encrypted, and as you do not use
the keyboard much, a key logger (software or hardware
based) would not be useful to an attacker. The voice
recognition software is of military grade standard, and
no vulnerabilities are known to exist. All your colleagues
are trusted individuals who are highly security conscious,
have no idea what you are working on and the office and
the windows are locked at night. A highly confidential
document is released to the press that only you have
been working on and which you have the only copy, and
as you are innocent of this betrayal of trust, you must
provide your employer with an explanation of how the
attacker gained access. Examining the logs, you discover
an intruder unlocked your PC at 7:00 AM on a Monday
morning, and copied the file using your user-name,
password and encryption code without any errors or
probing. The office is regularly swept for bugs and mobile
phones / recording devices etc. are strictly forbidden. How
did the attacker capture your login details?

Attack 2
A senior manager telephones to ask for their password to
be reset. The IT help-desk promptly resets the password
to the default, the manager then has to change the
password on first login. Later that day, the manager turns
on his PC after a business meeting and discovers that all
of his data has been deleted from his local drive. What
has happened?

Attack 3
All employees PC’s are attached to a standard corporate
network and the chief executive officer sends an email
to all staff informing them of a salary increase of 15%
taking effect immediately. Unfortunately, the CEO did not
write the email. Looking at the email headers, the email
has originated from the CEO’s PC, but he was not in
the office at the time and his user account has not been
compromised. How was this achieved?

The Importance of Physical and Environmental
Security
While it is taken as granted by most administrators that
servers need to be in a secure area preferably in a data-
center with fire protection, clean power, temperature
control and restricted access, often the rest of the
environment is neglected. The authors own pet hate is
the way modern buildings are laid out, with the ubiquitous
movable floor box that provided power and CAT 5/6/
7 services. Meant to be an improvement over surface
mount trunking and ceiling to desk arrangements, they

01/2012 40

SECURITY

www.bsdmag.org

including user-names, passwords, document and email text
etc. is exposed. Good PC client software that monitors USB
usage (and abuse) is available, but consideration should be
given to whether or not users should be allowed access to
USB at all. Unfortunately, it is easy enough just to install a
USB hub and as most PC’s nowadays use USB keyboards
and mice, even the old trick of disabling the USB ports
by disconnecting the cable header from the motherboard
(or as somebody suggested filling the sockets with epoxy
resin) will be in vain unless the PC is installed in a cage or
cabinet that physically limits access to the ports. Next, we
have video grabbers that will intercept and capture screen
shots onto a separate device. There is even a replacement
video cable available that contains a screen grabber that is
virtually indistinguishable from a standard cable. Finally, we
have a variation of the Ethernet tap scenario, just plug in a
mini-hub or switch between the PC and the network. While
this may not reveal a lot of corporate data as switches are
now intelligent enough to be zoned and virtualized, data on
that particular segment would be exposed.

Cultural Security
This is the habitation of the social engineer, the hacker with
people skills. Forgetting for the moment the electronic side
of social engineering (e.g. phishing, malware, fraudulent
password requests etc.), let us focus on the the human
side of the attack. The boundaries are not always clearly
defined and sometimes little effort is required on the part
of the hacker to manipulate the setting to his advantage
(e.g. if you know your victim is an avid Chicago Bulls fan,
there is a good chance their password is Basketball).
Most of the attacks here are facilitated through lack of
suspicion, naivety or human weakness (e.g. unsolicited
spam offering a financial reward to help a third party
smuggle money out of a foreign country) on the part of
the victim, and often the victim doesn’t realize the extent
of the fraud until it is too late. Sometimes the victim is
just a patsy for the attackers true target, e.g. obtaining a
high level technical support password to gain access to
a different users data. Sometime though, these attacks
have the co-operation of an insider (e.g feeding credit card
details to somebody outside the organization) and as the
insider will be deliberately defrauding the company, they
will take many steps to ensure that they are not discovered
and can lay dormant for quite some time unless rigorous
processes are in place to mitigate the risk. More often
than not, genuine mistakes will be be admitted to by
staff, but the smell test can be a good gauge in certain
circumstances. If a database is compromised and there
is absolutely no evidence whatsoever of a software based
attack, carelessness, or external compromise the security

officer is left with a problem. While there are a number of
techniques that can be used to track and analyze data
and access, it is always very difficult to come to terms
with the fact that an employee is potentially committing a
crime, and great care needs to be taken to ensure that
the innocent are not blamed or their characters maligned.
This is generally why companies and institutions hush-up
internal fraud, not only are they worried that their reputation
will be damaged, but the majority of their audience will not
appreciate the complexity of actually pursuing fraud within
a large organization. Risk can be mitigated by allowing
access to systems on a need to know basis, and regularly
performing audits, but even then dissatisfied employees,
poor working relationships and a corporate Laissez-Faire
attitude to security will not make matters easier. Sometimes
though in the case of internal fraud, the perpetrator fails the
smell test on such issues as severe financial difficulties,
relationship problems or a personal habit out of control. In
such circumstances Law Enforcement will be your best ally,
but is is essential to base investigations on the basis of fact
not just circumstantial evidence.

When the attack comes from the outside, it can be
commercially very difficult to quickly isolate the source
of the problem. As social engineering is effectively a
con-trick and many businesses are based on trust and
working relationships, the best mitigation is education.
Most end users will happily allow a colleague to plug a
USB pen drive into their PC but if this was disallowed
(or physically restricted) the next question is would they
allow an external consultant or expert with whom they
have no obvious trust relationship? Most people lean
towards submission to those in authority, and provided the
hacker can project sufficient authenticity, it is an almost
automatic social response to comply. Kevin Mitnick, the
reformed hacker, was quite open about this – it is often
easier to gain access via social engineering than actual
hacking. Education, auditing and testing therefore are the
best policies as well as validation and cross-referencing
security sensitive requests. One of the problems of large
anonymous corporations is that there is no easy way to
prove that Joe in accounts actually is Joe in accounts.
Unless systems are put in place to close the loop and
prove that Joe actually is Joe, then the social engineer
will always have the upper hand.

Software Security
This is the classic interpretation of an attack vector, and
while there are many thousands of exploits available,
they really can be split into 4 main conceptual categories.
Sometimes, an attacker will take advantage of more
than one weakness, and unless a system is very poorly

01/2012 40

SECURITY

www.bsdmag.org

secured, often the attacker must use more than one
technique to gain access. For instance, the attack on my
FreeBSD box would fall into categories 2 & 3.

Poor System Con�guration
This is probably the most obvious hole in security to
patch, and covers a multitude of sins from password-less
accounts to unused services running on a server. Apart
from good practice, eliminating the obvious reduces the
available footprint for attack. Certain legacy applications
and services (e.g. telnetd) are so inherently insecure they
should never be run at all.

Software Performing As It Should Do
This might seem paradoxical, but almost all distributed
denial of service attacks (DDOS) take advantage of
this premise. Your web-server is there to serve pages,
so the attackers mentality is How can I break this by
loading the server outside the performance envelope?.
This can be mitigated by good systems architecture,
load balancing, security patches and throttling, but in
distributed environments like the Internet if your web-
server is attacked by a bot-net (A network of compromised
machines) it is extremely difficult to separate legitimate
from the Illegitimate traffic, especially if the bot-net is
well distributed. The 4.5 million-strong Alureon bot-net is
a good example, both bandwidth and servers would be
unable to cope under a sustained attack. The DDOS is a
fearsome weapon, and while you can mitigate you cannot
totally prevent failure under these circumstances. The
best you can do is monitor your traffic patterns and take
evasive action if an obvious attack takes place.

Bad Design
It is always good for a lively discussion with developers
whether a piece of code has a bug or a feature. This
extends right through the Operating System, and virtually
no software is immune. With the best will in the world, a
developer will write a quality piece of software, dependent
on external libraries or the O/S written by others and
thereby introducing problems outside of their control. For
instance, the C function call strcpy is not bounds checked,
and is a common vector for buffer overflow attacks. While
good programmers employ defensive programming (e.g.
writing code that will cope with the unexpected such as
parameters out of bounds etc.) sometimes the law of
unintended consequences comes into play. HTML based
forums are an obvious example, it is a good idea to give
the user the ability to add HTML to their post, but what
happens if this is malicious Javascript or an XSS attack?
How do we separate Good functionality from Potential

http://www.bsdcertification.org/
https://register.bsdcertification.org//register/payment
https://register.bsdcertification.org//register/get-a-bsdcg-id

01/2012 42

SECURITY

Attack 3
The SMTP server was not secured with password
authentication. By spoofing the MAC and IP address of
the CEO’s PC, the attacker was able to telnet onto port
25 of the email server and spoof the email conversation.
This is also easily achieved on many public ISP networks,
spoofing email between addresses on the same domain
is trivial. While the solution is easy to fix on internal email
servers, it is a major problem on the Internet.

Please Note
The information in these articles is designed for system
administrators to help improve systems security. While
testing and discovering vulnerabilities in your own
personal systems for the purpose of improving security
is perfectly legal in the UK, legislation is different in other
parts of the world. Employers may take disciplinary and /
or legal action against employees if these tools are used
in the workplace without permission. Using these tools
against third-party systems without permission is not only
considered unethical, but is also illegal in many countries.
The author and BSD Magazine do not condone unethical
or illegal hacking.

ROB SOMERVILLE
Rob Somerville has been passionate about technology since
his early teens. A keen advocate of open systems since the mid
eighties, he has worked in many corporate sectors including
�nance, automotive, airlines, government and media in a
variety of roles from technical support, system administrator,
developer, systems integrator and IT manager. He has moved on
from CP/M and nixie tubes but keeps a soldering iron handy just
in case.

exploit? While I believe these problems can be resolved
to a degree through adequate testing (e.g. fuzzers, pen
testing etc.), ultimately as technology advances more
vulnerabilities will be exposed. This is where developers
have a responsibility to play, and why the author will always
lean strongly towards Open Source and *BSD etc. Peer
review, an openness about security issues and desire to
get it right have been strong driving forces in free software
community, and it is so apparent the commitment to both
security and quality. On the other hand, Commercial
vendors work on a purely need to know basis, and often
essential patches are not made in a timely fashion as it not
commercially viable or would break too many things in the
progress. When the author started working in an electronics
factory in the late 70’s, Automated Test Equipment (ATE)
was not available and failures were high. Now, ATE is the
norm and the failure rates are inconsequential. If we are to
look at the security issue from a different perspective, the
hackers bot-net is a brute-force software equivalent of ATE
– using technology to test technology to destruction. This is
where free software has the upper hand over commercial
offerings, we have the flexibility and the ingenuity to
respond creatively to the threat and to lead the field.
While others refuse to accept that security is everybodies
problem, the problem will persist and like the emperor with
no clothes, they themselves will be exposed.

Answers
Attack 1
Using a laser based microphone, the attacker scanned
your office window to capture the office conversations. It
was then a matter of using social engineering to persuade
the office cleaner to allow him access to office. To re-
enforce his case, he bluffed the cleaner by proving he could
gain access to you voice operated PC. Unfortunately, the
voice recognition software did not pick up on his regional
accent, but it did an excellent job of decoding the correct
words and phrases. Using a special refractive film or glass
on the windows would have stopped this attack dead (as
used by certain security agencies and embassies).

Attack 2
The IT help-desk did not have sufficient identity controls
in place. The attacker used the managers phone while he
was out of the office, and requested a password reset.
As support did not identify the manager other than his
extension number on the telephone system, he was
not challenged. Once access was gained, the attacker
securely deleted the files on the local drive. This could
be mitigated by giving each user an individual help-desk
password only known to themselves and IT.

Reference
• http://www.argoasecurity.com/product_detail.aspx?product

ID=880 – Professional laser microphone
• http://www.ehow.com/how_5969176_make-laser-listening-

device.html – DIY proof of concept of the above
• http://www.janitha.com/archives/146 – Ethernet taps
• http://www.keydemon.com – Key logger
• http://www.keydemon.com/tiny_frame_grabber/ – Video logger
• http://trinityhome.org – Trinity Rescue CD
• http://www.intel.com/support/processors/pentiumiii/sb/CS-

007579.htm – Intel unique CPU ID
• http://www.pc-safe.co.uk – PC security cases
• http://arstechnica.com/security/news/2011/07/4-million-strong-

alureon-botnet-practically-indestructable.ars – Alureon Botnet
• http://www.techrepublic.com/article/protect-your-apache-

server-from-dos-attacks/5058830 – Securing Apache. This is
an old article, but has many valid points still

http://www.argoasecurity.com/product_detail.aspx?productID=880
http://www.argoasecurity.com/product_detail.aspx?productID=880
http://www.ehow.com/how_5969176_make-laser-listening-device.html
http://www.ehow.com/how_5969176_make-laser-listening-device.html
http://www.janitha.com/archives/146
http://www.keydemon.com
http://www.keydemon.com/tiny_frame_grabber/
http://trinityhome.org
http://www.intel.com/support/processors/pentiumiii/sb/CS-007579.htm
http://www.intel.com/support/processors/pentiumiii/sb/CS-007579.htm
http://www.pc-safe.co.uk
http://arstechnica.com/security/news/2011/07/4-million-strong-alureon-botnet-practically-indestructable.ars
http://arstechnica.com/security/news/2011/07/4-million-strong-alureon-botnet-practically-indestructable.ars
http://www.techrepublic.com/article/protect-your-apache-server-from-dos-attacks/5058830
http://www.techrepublic.com/article/protect-your-apache-server-from-dos-attacks/5058830

http://www.freebsdmall.com

01/2012 44

LET’S TALK Elephants in Prato

www.bsdmag.org 45

It took more than six months for the Italian PostgreSQL
Users’ Group (ITPUG) to organize the event, that even if
quite young (the first conference was organized in 2007),

it has quickly become a must for the Italian community.
After two years of vacancy from Prato, the organizers

have decided to come back to the place were all started
five years ago: the Monash University Center in Prato.
Not that the previous two editions, respectively in Pisa
and Rome, were unsuccessful, but organizers felt more
comfortable in Prato due also to the fact that a lot of the
most active members of ITPUG live near this city.

A Quick Summary of the Event
Everything started the night before the event with a
great dinner based on local foods (in particular the well
known Fiorentina steak) and wines. In a non formal
atmosphere you could have seen members of the Italian
and international communities, with different skills and
backgrounds, all together at the same table. This is a
thing organizers are very proud about, since the event
aimed not only to promote PostgreSQL as a product, but
also as a community.

The day after, the conference took place and the
atmosphere became a little more formal. Each attendee,
after a registration, was able to choose among two parallel
sessions: one more oriented to database administrators
(DBAs) and one more oriented to developers.

ITPUG staff, through its president Gabriele Bartolini,
welcomed the guests and introduced the conference. Before
leaving the microphone to technical guests there were a few
words by local government authority, who emphasized how
much important the Open Source movement has become
in Italy and how much it is encouraged day by day.

The keynote speech was performed by Magnus
Hagander, president of the PostgreSQL Europe, who

presented all the new features of the new born release
9.1, as well as some of the ongoing development for the
next 9.2 version. The speech was held in the superb Grollo
room, which fascinated all the guests with its elegance.

After the keynote, it was time for a coffee break, that
allowed guests to relax, talk and visit the elegant Monash
University and its very elegant rooms.

And then the real conference begun. Speakers alternate
themselves in a full time schedule along the two parallel
sessions: the database administrators track was held in
the Grollo room, while the developers track in the Venice
room.

Describing each talk one by one is out the scope of this
article; people interested can download slides and material
from the conference official Web site (see References).

Just for the record, during the all day there were talks
about PostgreSQL’s future, the long debate NO-SQL
versus relational database (sometimes referred as YES-
SQL), backup and stream replication tools, tutorials
on how to efficiently use Common Table Expressions
(CTEs) and on how to access foreign data tables from
a PostgreSQL instance. There was also some talk about
security, in particular on how to store password inside
PostrgeSQL in a secure way. Other talks presented a few
ways to connect to a PostgreSQL database from foreign
programming languages or how to write new contrib
modules for the database itself in one of such languages.
Last but not least, a few talks about the adoption of

Elephants in Prato
On November 25th a group of
PostgreSQL community members met
together in Prato for the 5th Italian
PostgreSQL Day (PGDay).

PGDay by Numbers
The PGDay had almost 100 attendees, which is a quite big
number considering that is around the half of the number of
participants of the European PostgreSQL Conference. There
were 25 talks presented (including the lightning talks) for
about 15 hours of speech.

01/2012 44

LET’S TALK Elephants in Prato

www.bsdmag.org 45

at almost every level, and the more you will contribute, the
more you will become expert on the system and the more
you (hopefully) will become addicted by the project!

After the lightning talk session the conference split
again in the two parallel tracks, that concluded in the
Grollo room later for the closing session. I had the honor,
to officially end up the conference. I gave a quick talk to
all the audience, first of all thanking all the ITPUG staff
and volunteers that helped us making a great event,
then thanking also all the attendee for their presence.
As usual, I talked about the need for PostgreSQL and
ITPUG to constantly gain new active members that can
help supporting both the project itself and the Italian
community. The hope, of course, was to see again each
other the next year at the new PGDay!

And since it is a tradition the PGDays, while the
conference officially ended with my talk, the community
event did not. And a few minutes later, almost all
participants and organizers met together again at a pub,
drinking great Guinness beer offered by 2ndQuadrant, a
gold sponsor of the event. I was nicely surprised about
how many attendees did not miss this off-conference
meeting, proving again how much is important for users,
developers, passionates to stay together and talk about
their favorite database.

At the end of the conference it was time for the organizers
to evaluate the event, that was of course of a great success.
Interestingly, the number of enterprises which participated
to the event has raised constantly during the past editions,
and this year it was strongly evident how such enterprises
are no more looking at PostgreSQL as an alternate
database to some proprietary solution, but are basing their
mainstream solutions on PostgreSQL.

As a final note, if you have the possibility, I suggest
you to not miss any further PGDay in Italy. You will be
glad about the organization and the comfort of a such
community based technical event!

PostgreSQL in several contexts, from the enterprise level
to the local government one.

The morning ended with a great buffet lunch, catered in
one of the Monash University room. Besides having time
to relax and enjoy very good local meal, this break was
an opportunity for guests to meet, talk and spend some
quality time together. As an organizer, it was really nice
to walk around seeing all these people talking together,
discussing problems and solutions, presenting products,
and so on. In a few words, exchanging experiences.
I strongly believe this is the kind of event that makes
Open Source movement really great, because it works
as a people attractor. And the most people a project can
attract, the most the project can evolve.

The lightning talk session, performed after the lunch, has
been really successful with a lot of presentations and quick
description of experiences. The rule of the lightning talks is
simple: you have no more than 5 minutes to present any
argument you want, and then you’ll be kicked off. While
almost all lightning talks were technical, it was nice to see
a few non-technical either. In particular a few speakers
presented summaries about past events and/or their
experiences on how they became PostgreSQL contributors,
at any level from the document writer to the code committer.
I believe this kind of talks have to been promoted much
more, because people often is scared to start contributing
to a project, feeling he will not be able to do a good work or
feeling like under constant evaluation. Instead, as pointed
out during the lightning talks, everyone can start contributing

History of PGDay(s) at Glance
The �rst official Italian PGDay was organized by a bunch of
volounteers and passionates, including the author, in 2007. At
that time ITPUG did not exist at all. The conference catch the
attention of several other PostgreSQL related communities,
including Japan PostgreSQL Users’ Group (JPUG), and had a lot of
special guests including members of the core team. This quickly
lead the organizers to extend the conference from one day only
to a two days event.

Galvanized by the success of the conference, the organizers
decided to create the Italian PostgreSQL Users’ Group, an enti-
ty that promotes PostgreSQL in Italy giving support to users and
factories, organizing events, promoting the translation and the
development of PostrgeSQL related tools and so on.

The second PGDay, run by ITPUG, was a two day conference
that act both as Italian and European official meeting. It was also
the event that gave the kick off for the PGeu, the European com-
mittee that works similarly to ITPUG but at an European level.

All the other subsequent events have been marked explicitly
as Italian, but this does not mean that were not foreign members
at all the past editions. And in fact, PGDay-Italy is today a well
known event that attracts every year members of the internatio-
nal community and member of the core team.

References
• PGDay 2011 official Web Site: http://www.pgday.it
• ITPUG official Web Site: http://www.itpug.org
• PostgreSQL official Web Site: http://www.postgresql.org

LUCA FERRARI
Luca Ferrari lives in Italy with his wife and son. He is an Adjunct
Professor at Nipissing University, Canada, a co-founder and the
vice-president of the Italian PostgreSQL Users’ Group (ITPUG).
He simply loves the Open Source culture and refuses to log-
in to non-Unix systems. He can be reached on line at http://
�uca1978.blogspot.com.

http://www.pgday.it
http://www.itpug.org
http://www.postgresql.org
http://fluca1978.blogspot.com
http://fluca1978.blogspot.com

http://www.freebsdfoundation.org

http://bsdmag.org

�������������������������������������
��������������������������

���

���

��

����������������
����������������������������������

������������������������������������
��������������������������������

http://www.ixsystems.com/community

	Cover

	Dear Readers
	Contents
	What’s Newin FreeBSD9.0
	Home Brew Captive
Portal With OpenBSD
	Puppet on FreeBSD
	FreeBSD
IPS With Snort Inline
	malloc(9) The Kernel’s General Purpose Memory Allocator

	Keeping Base System & Packages Up-To-Date

	Anatomy of a FreeBSD Compromise (Part 2)

	Elephants in Prato

